Baer Survey Specialist Report Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brief Communication: Meteorological and Climatological Conditions
Nat. Hazards Earth Syst. Sci., 18, 3037–3043, 2018 https://doi.org/10.5194/nhess-18-3037-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Brief communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, USA Nina S. Oakley1,2, Forest Cannon2, Robert Munroe3, Jeremy T. Lancaster4, David Gomberg3, and F. Martin Ralph2 1Western Regional Climate Center, Desert Research Institute, 2215 Raggio Parkway, Reno, Nevada 89512, USA 2Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093, USA 3National Weather Service, Oxnard/Los Angeles, 520 N. Elevar St., Oxnard, CA 93030, USA 4California Geological Survey, 801 K St., Sacramento, CA 95814, USA Correspondence: Nina S. Oakley ([email protected]) Received: 20 June 2018 – Discussion started: 26 June 2018 Revised: 8 October 2018 – Accepted: 25 October 2018 – Published: 19 November 2018 Abstract. The Thomas Fire burned 114 078 ha in Santa rainfall intensity of 24 mm h−1 (USGS, 2018a; Fig. S1 in the Barbara and Ventura counties, southern California, during Supplement). December 2017–January 2018. On 9 January 2018, high- In the first significant rainfall event of the wet season on 9 intensity rainfall occurred over the Thomas Fire burn area January 2018, high-intensity rainfall occurred over the west- in the mountains above the communities of Montecito and ernmost portion of the Thomas Fire burn area between 11:30 Carpinteria, initiating multiple devastating debris flows. The and 12:00 UTC (03:30–04:00 LST). -
Review of California Wildfire Evacuations from 2017 to 2019
REVIEW OF CALIFORNIA WILDFIRE EVACUATIONS FROM 2017 TO 2019 STEPHEN WONG, JACQUELYN BROADER, AND SUSAN SHAHEEN, PH.D. MARCH 2020 DOI: 10.7922/G2WW7FVK DOI: 10.7922/G29G5K2R Wong, Broader, Shaheen 2 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. UC-ITS-2019-19-b N/A N/A 4. Title and Subtitle 5. Report Date Review of California Wildfire Evacuations from 2017 to 2019 March 2020 6. Performing Organization Code ITS-Berkeley 7. Author(s) 8. Performing Organization Report Stephen D. Wong (https://orcid.org/0000-0002-3638-3651), No. Jacquelyn C. Broader (https://orcid.org/0000-0003-3269-955X), N/A Susan A. Shaheen, Ph.D. (https://orcid.org/0000-0002-3350-856X) 9. Performing Organization Name and Address 10. Work Unit No. Institute of Transportation Studies, Berkeley N/A 109 McLaughlin Hall, MC1720 11. Contract or Grant No. Berkeley, CA 94720-1720 UC-ITS-2019-19 12. Sponsoring Agency Name and Address 13. Type of Report and Period The University of California Institute of Transportation Studies Covered www.ucits.org Final Report 14. Sponsoring Agency Code UC ITS 15. Supplementary Notes DOI: 10.7922/G29G5K2R 16. Abstract Between 2017 and 2019, California experienced a series of devastating wildfires that together led over one million people to be ordered to evacuate. Due to the speed of many of these wildfires, residents across California found themselves in challenging evacuation situations, often at night and with little time to escape. These evacuations placed considerable stress on public resources and infrastructure for both transportation and sheltering. -
Thomas Fire – After Action Review
Thomas Fire 12/04/2017 – 12/22/2017 City of Ventura Emergency Operations Center After Action Review INTRODUCTION On December 4, 2017, the Thomas Fire started north of the City of Santa Paula. Driven by intense Santa Ana winds, the fire reached the City of Ventura within hours and damaged or destroyed 686 structures. At the time of final containment, the Thomas Fire would be classified as the largest fire in recorded California history. To assist with response efforts, the City proclaimed a local state of emergency and activated its Emergency Operations Center (EOC). Per the City’s Emergency Plan, the primary objective during the emergency was to provide for effective life safety measures, reduce property loss and protect the environment. As part of the EOC process, an After Action Review (AAR) began informally during activation and then formally commenced in June, 2018. During the Thomas Fire, over 140 persons served in the City of Ventura EOC. AARs focus on nationally established core capabilities (currently there are 32 core capabilities spanning 5 mission areas: Prevention, Protection, Mitigation, Response and Recovery). After a disaster, jurisdictions in California are required by statute (California Code of Regulations, section 2900[q]) to prepare an AAR to identify areas of improvement and corrective actions for each identified deficiency. As a compliance document focusing on improvement, the AAR does not focus on the successes but rather those areas that need to be improved upon. While interviewing staff from each EOC section, many successes were identified and discussed. The AAR captures some of these successes as strengths, but does not go into detail about the many successes that were experienced during this fire. -
Cal Fire: Creek Fire Now the Largest Single Wildfire in California History
Cal Fire: Creek Fire now the largest single wildfire in California history By Joe Jacquez Visalia Times-Delta, Wednesday, September 23, 2020 The Creek Fire is now the largest single, non-complex wildfire in California history, according to an update from Cal Fire. The fire has burned 286,519 acres as of Monday night and is 32 percent contained, according to Cal Fire. The Creek Fire, which began Sept. 4, is located in Big Creek, Huntington Lake, Shaver Lake, Mammoth Pool and San Joaquin River Canyon. Creek Fire damage realized There were approximately 82 Madera County structures destroyed in the blaze. Six of those structures were homes, according to Commander Bill Ward. There are still more damage assessments to be made as evacuation orders are lifted and converted to warnings. Madera County sheriff's deputies notified the residents whose homes were lost in the fire. The Fresno County side of the fire sustained significantly more damage, according to Truax. "We are working with (Fresno County) to come up with away to get that information out," Incident Commander Nick Truax said. California wildfires:Firefighters battle more than 25 major blazes, Bobcat Fire grows Of the 4,900 structures under assessment, 30% have been validated using Fresno and Madera counties assessor records. Related: 'It's just too dangerous': Firefighters make slow progress assessing Creek Fire damage So far, damage inspection teams have counted more than 300 destroyed structures and 32 damaged structures. "These are the areas we can safely get to," Truax said. "There are a lot of areas that trees have fallen across the roads. -
Geologic Hazards
Burned Area Emergency Response (BAER) Assessment FINAL Specialist Report – GEOLOGIC HAZARDS Thomas Fire –Los Padres N.F. December, 2017 Jonathan Yonni Schwartz – Geomorphologist/geologist, Los Padres NF Introduction The Thomas Fire started on December 4, 2017, near the Thomas Aquinas College (east end of Sulphur Mountain), Ventura County, California. The fire is still burning and as of December 13, 2017, is estimated to have burned 237,500 acres and is 25% contained. Since the fire is still active, the BAER Team analysis is separated into two phases. This report/analysis covers a very small area of the fire above the community of Ojai, California and is considered phase 1 (of 2). Under phase 1 of this BAER assessment, 40,271 acres are being analyzed (within the fire parameter) out of which 22,971 acres are on National Forest Service Lands. The remaining 17,300 acres are divided between County, City and private lands. Out of a total of 40,271 acres that were analyzed, 99 acres were determined to have burned at a high soil burn severity, 19,243 acres at moderate soil burn severity, 12,044 acres at low soil burn severity and 8,885 acres were unburned. All of the above acres including the unburned acres are within the fire parameter. This report describes and assesses the increase in risk from geologic hazards within the Thomas Fire burned area. When evaluating Geologic Hazards, the focus of the “Geology” function on a BAER Team is on identifying the geologic conditions and geomorphic processes that have helped shape and alter the watersheds and landscapes, and assessing the impacts from the fire on those conditions and processes which will affect downstream values at risk. -
Fuels, Fire Suppression, and the California Conundrum
Fuels, fire suppression, and the California conundrum Eric Knapp U.S. Forest Service, Pacific Southwest Research Station Redding, CA Bald and Eiler Fires - 2014; Photo: T. Erdody How did we get here? 2018: Most destructive wildfire (Camp Fire) Largest wildfire (Mendocino Complex) Most acres burned in modern CA history 2017: 2nd most destructive wildfire (Tubbs Fire) 2nd largest wildfire (Thomas Fire) Mediterranean climate = fire climate Redding, CA (Elev. 500 ft) 8 100 7 6 80 F) o 5 Wildfire season 4 60 3 Precipitation (in) 2 40 Ave Max.Temp. ( 1 0 20 1 2 3 4 5 6 7 8 9 10 11 12 Precipitation Month Temperature • Very productive – grows fuel • Fuel critically dry every summer • Hot/dry = slow decomposition Fire activity through time Shasta-Trinity National Forest (W of Trinity Lake) 1750 1850 1897 Fire return interval 3 years 12 years No fire since 1897 Fuel limited fire regime | Ignition limited fire regime • Fire was historically a combination of indigenous burning and lightning ignitions • Aided travel, hunting, and improved the qualities of culturally important plants • Many early Euro-American settlers initially continued to burn • Forage for grazing animals • Lessened the danger from summer wildfires • Foresters advocated for Halls Flat, A. Wieslander, 1925 suppressing fire • “The virgin forest is certainly less than half stocked, chiefly as one result of centuries of repeated fires” – Show and Kotok 1925 • Believed keeping fire out would be cheaper than treating fuels with fire Burney area, A. Wieslander, 1925 Change in structural variability (trees > 4 in.) 1929 2008 Methods of Cutting Study – Stanislaus National Forest Lack of fire also changed non-forests A. -
Friends of Ventura River
C ALIFORNIA Ventura River T HREAT: DAM Summary The Risk Matilija Dam not only stands in the way of The Matilija Dam is a 200-foot high concrete the Ventura River’s endangered southern steel- arched structure that is owned by the Ventura head; it also prevents much-needed sand and County Flood Control District. It was built in sediment from flowing downstream and 1947 as part of the river’s flood control system replenishing popular southern California surf- and to provide water for the Ojai Valley. The ing beaches. While it is easy to find wide- dam lacks fish passage, so southern steelhead spread support for removing the dam, it will are blocked from approximately 50 percent of be harder to find money to complete the task. their historical spawning and rearing habitat. Federal, state, and local authorities must agree The fish were listed as endangered under the that removing the dam is a top priority and federal Endangered Species Act in 1997. must work together to find the necessary Because a massive amount of silt has built funds. up behind the structure, Matilija Dam no longer provides flood control benefits and pro- The River vides only minimal water storage capacity. The mainstem of the Ventura River flows The reservoir, which originally held 7,000 approximately 16 miles from the confluence acre-feet of water, now holds only 500 acre- of Matilija Creek and North Fork Matilija feet — and the storage capacity continues to Creek (located within the Los Padres National decrease. An estimated 5 million to 7 million Forest) to the Pacific Ocean near the City of cubic yards of sediment is backed up behind Ventura. -
STATE of the WATERSHED – Report on Surface Water Quality the Ventura River Watershed
STATE OF THE WATERSHED – Report on Surface Water Quality The Ventura River Watershed California Regional Water Quality Control Board – Los Angeles Region May 2002 THIS PAGE INTENTIONALLY LEFT BLANK 2 TABLE OF CONTENTS EXECUTIVE SUMMARY......................................................................................................................... 4 STATE OF THE WATERSHED............................................................................................................... 6 Physical Description of River, Subwatersheds, Reservoirs, and Structures .................................... 7 Groundwater Basins....................................................................................................................... 13 Flows and Precipitation.................................................................................................................. 15 Water Agencies and Water Use ..................................................................................................... 17 Historical Events/Development in Watershed ............................................................................... 19 Biological Setting .......................................................................................................................... 22 Water Resources and Beneficial Uses ........................................................................................... 27 Stakeholder Groups....................................................................................................................... -
Montecito-Carpinteria Station Location Study
Fire Station Location Study Community Risk Assessment Standards of Cover February 2021 Montecito Fire Protection District Carpinteria-Summerland Fire Protection District Fire Station Location/CRA‐SOC Montecito FPD/Carpinteria‐Summerland FPD CONTENTS Acknowledgments .................................................................................................................... iv Introduction .............................................................................................................................. v SECTION I: OVERVIEW OF THE COMMUNITIES & FIRE DISTRICTS ................................................... 1 Description of the Communities Served ....................................................................................... 2 City of Carpinteria ................................................................................................................................. 2 Summerland Community ...................................................................................................................... 2 Montecito Community .......................................................................................................................... 3 Description of the Fire Districts ................................................................................................... 5 Carpinteria‐Summerland Fire Protection District .................................................................................. 5 Montecito Fire Protection District ....................................................................................................... -
Disproportionate Impacts of Wildfires Among Elderly and Low-Income
International Journal of Environmental Research and Public Health Article Disproportionate Impacts of Wildfires among Elderly and Low-Income Communities in California from 2000–2020 Shahir Masri 1, Erica Scaduto 2 , Yufang Jin 2 and Jun Wu 1,* 1 Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA 92697, USA; [email protected] 2 Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA; [email protected] (E.S.); [email protected] (Y.J.) * Correspondence: [email protected] Abstract: Wildfires can be detrimental to urban and rural communities, causing impacts in the form of psychological stress, direct physical injury, and smoke-related morbidity and mortality. This study examined the area burned by wildfires over the entire state of California from the years 2000 to 2020 in order to quantify and identify whether burned area and fire frequency differed across Census tracts according to socioeconomic indicators over time. Wildfire data were obtained from the California Fire and Resource Assessment Program (FRAP) and National Interagency Fire Center (NIFC), while demographic data were obtained from the American Community Survey. Results showed a doubling in the number of Census tracts that experienced major wildfires and a near doubling in the number of people residing in wildfire-impacted Census tracts, mostly due to an over 23,000 acre/year increase in the area burned by wildfires over the last two decades. Census tracts with a higher fire frequency and burned area had lower proportions of minority groups on average. However, when considering Native American populations, a greater proportion resided in highly impacted Census tracts. -
Chapter 10 Water Resources
Chapter 10 Water Resources Water Resources 2040 General Plan 10 WATER RESOURCES INTRODUCTION This chapter summarizes the various water resources and water resource issues in Ventura County. It is organized into the following sections: ▪ Major Findings (Section 10.1) ▪ Legal and Regulatory Framework for Water Management (Section 10.2) ▪ Integrated Regional Water Management (0) ▪ Existing Conditions (by watershed) (Section 10.4) ▪ Trends and Future Conditions (Section 10.5) ▪ Key Terms (Section 10.6) ▪ References (Section 10.7) The organization of this chapter differs from others in the Background Report because of the nature of its subject matter. First, because the overall legal and regulatory framework affecting water resources is key to understanding how such resources are managed, the framework is the first substantive discussion in this chapter. Second, because water resources are so integrally tied to geography, the existing conditions discussions are organized according to the county’s watersheds, with each aspect of the resource addressed as it relates uniquely to each watershed. MAJOR FINDINGS Adequate water supply is a current and ongoing concern in Ventura County due to climate change and drought, the related declines in river flows and reservoir levels, historic overdraft of several local groundwater basins, curtailment of groundwater supplies in southern Ventura County, new groundwater well prohibitions, and reduced deliveries of imported water. More than 850,000 residents and 156 square miles (95,802 acres) of irrigated farmland in Ventura County experienced direct impacts from the drought that began in 2012. ▪ The water supply challenges are great and could impact residents, businesses, agriculture, and the environmental resources of Ventura County without concerted action. -
Evaluating the Ability of FARSITE to Simulate Wildfires Influenced by Extreme, Downslope Winds in Santa Barbara, California
fire Article Evaluating the Ability of FARSITE to Simulate Wildfires Influenced by Extreme, Downslope Winds in Santa Barbara, California Katelyn Zigner 1,* , Leila M. V. Carvalho 1,2 , Seth Peterson 1, Francis Fujioka 3, Gert-Jan Duine 2 , Charles Jones 1,2, Dar Roberts 1,2 and Max Moritz 1,2,4 1 Department of Geography, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; [email protected] (L.M.V.C.); [email protected] (S.P.); [email protected] (C.J.); [email protected] (D.R.); [email protected] (M.M.) 2 Earth Research Institute, University of California, Santa Barbara, CA 93106, USA; [email protected] 3 CEESMO, Chapman University, Orange, CA 92866, USA; [email protected] 4 University of California Cooperative Extension, Agriculture and Natural Resources Division, Oakland, CA 94607, USA * Correspondence: [email protected] Received: 12 June 2020; Accepted: 7 July 2020; Published: 10 July 2020 Abstract: Extreme, downslope mountain winds often generate dangerous wildfire conditions. We used the wildfire spread model Fire Area Simulator (FARSITE) to simulate two wildfires influenced by strong wind events in Santa Barbara, CA. High spatial-resolution imagery for fuel maps and hourly wind downscaled to 100 m were used as model inputs, and sensitivity tests were performed to evaluate the effects of ignition timing and location on fire spread. Additionally, burn area rasters from FARSITE simulations were compared to minimum travel time rasters from FlamMap simulations, a wildfire model similar to FARSITE that holds environmental variables constant. Utilization of two case studies during strong winds revealed that FARSITE was able to successfully reconstruct the spread rate and size of wildfires when spotting was minimal.