Chemistry of the Atmospheres of Mars, Venus, and Titan

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry of the Atmospheres of Mars, Venus, and Titan Krasnopolsky V. A. and Lefèvre F. (2013) Chemistry of the atmospheres of Mars, Venus, and Titan. In Comparative Climatology of Terrestrial Planets (S. J. Mackwell et al., eds.), pp. XX–YY. Univ. of Arizona, Tucson, DOI: XXXXXXXXXXXXXXXXXXXXXX. Chemistry of the Atmospheres of Mars, Venus, and Titan Vladimir A. Krasnopolsky Catholic University of America Franck Lefèvre Service d’Aeronomie Observations and models for atmospheric chemical compositions of Mars, Venus, and Titan are briefly discussed. While the martian CO2-H2O photochemistry is comparatively simple, Mars’ obliquity, elliptic orbit, and rather thin atmosphere result in strong seasonal and latitudinal variations that are challenging in both observations and modeling. Venus’ atmosphere presents a large range of temperature and pressure conditions. The atmospheric chemistry involves species of seven elements, with sulfur and chlorine chemistries dominating up to 100 km. The atmosphere below 60 km became a subject of chemical kinetic modeling only recently. Photo- chemical modeling is especially impressive for Titan: Using the N2 and CH4 densities at the surface and temperature and eddy diffusion profiles, it is possible to calculate vertical profiles of numerous neutrals and ions throughout the atmosphere. The Cassini-Huygens observations have resulted in significant progress in understanding the chemistry of Titan’s atmosphere and ionosphere and provide an excellent basis for their modeling. 1. INTRODUCTION 2 1 dr()Φ =−PnL Energies of the solar UV photons and energetic particles r2 dr may be sufficient to break chemical bonds in atmospheric dn 11dT 11+α dT species and form new molecules, atoms, radicals, ions, and Φ =−()KD+ − nK ++ + D dr HTa dr HTddr free electrons. These products initiate chemical reactions that further complicate the atmospheric composition, which is also significantly affected by dynamics and transport Here r is radius, Φ and n are the flux and number density processes. Photochemical products may be tracers of pho- of species, P and L are the production and loss of species tochemistry and dynamics in the atmosphere and change in chemical reactions, α is the thermal diffusion factor, Ha its thermal balance. Gas exchange between the atmosphere, and H are the mean and species scale heights, and T is the space, and solid planet also determines the properties of temperature. Substitution of the second equation in the first the atmosphere. results in an ordinary second-order nonlinear differential Studies of the atmospheric chemical composition and equation. Finite-difference analogs for these equations may its variations are therefore essential for all aspects of at- be solved using methods described by Allen et al. (1981) mospheric science, and many instruments on spacecraft and Krasnopolsky and Cruikshank (1999). missions to the planets are designed for this task. Interpre- Boundary conditions for the equations may be densities, tation of the observations requires photochemical models fluxes, and velocities of the species. Fluxes and velocities that could adequately simulate photochemical and transport are equal to zero at a chemically passive surface and at the processes. exobase for molecules that do not escape. Requirements One-dimensional steady-state global-mean self-consis- for the boundary conditions are discussed in Krasnopolsky tent models are a basic type of photochemical modeling. (1995). Generally, the number of nonzero conditions should These models simulate altitude variations of species in an be equal to the number of chemical elements in the system. atmosphere. Vertical transport in the model is described by This type of photochemical modeling is a powerful tool for eddy diffusion coefficient K(z). The solar UV spectrum, studying atmospheric chemical composition. For example, absorption cross sections, reaction rate coefficients, eddy in the case of Titan, a model results in vertical profiles of 83 and molecular diffusion coefficients K(z) and D(z), and neutral species and 33 ions up to 1600 km using densities of temperature profile T(z) are the input data for the model. N2 and CH4 near the surface (Krasnopolsky, 2009a, 2012c). The model provides a set of continuity equations for each Photochemical general circulation models (GCMs; see species in a spherical atmosphere Forget and Lebonnois, this volume) present significant prog- 1 2 Comparative Climatology of Terrestrial Planets ress in the study and reproduction of atmospheric properties for the UV ozone detection (1 μm-atm = 10–4 cm × 2.7 × under a great variety of conditions. These GCMs are the 1019 cm–3 = 2.7 × 1015 cm–2). The observations at low and best models for studying variations of species with local middle latitudes beyond the polar caps and hoods were time, latitude, season, and location. below this limit. Some basic properties of the terrestrial planets and their The upper atmosphere was studied by the UV spectrom- atmospheres are listed in Table 1. They are discussed in eters at Mariner 6, 7, and 9, as well as mass spectrometers detail in other chapters of this book. and retarding potential analyzers on the Viking landers Below we will briefly discuss observational data on and (Barth et al., 1972; Nier and McElroy, 1977; Hanson et al., photochemical modeling of the atmospheric chemical com- 1977). Mass spectrometers on the Viking landers and more positions on Mars, Venus, and Titan. Earth’s photochemistry recently on the Mars Science Laboratory (MSL) measured is strongly affected by life and human activity (Yung and the compositions of the lower atmosphere, especially N2 and DeMore, 1999) and is beyond the scope of this chapter. noble gases Ar, Ne, Kr, and Xe. Helium was later observed Previous reviews of the photochemistry of Mars, Venus, using the Extreme Ultraviolet Explorer (Krasnopolsky and and Titan may be found in Levine (1985), Krasnopolsky Gladstone, 2005). The first detailed study of the H2O global (1986), and Yung and DeMore (1999). distribution was made by the Viking orbiters (Jakosky and Farmer, 1982). 1 2. MARS Noxon et al. (1976) detected the O2( Δg) dayglow at 1.27 μm and properly explained its excitation by photoly- 2.1. Chemical Composition of Mars’ Atmosphere and sis of ozone and quenching by CO2. Traub et al. (1979) Its Variations repeated their observations at three latitude bands. Using groundbased IR heterodyne spectroscopy at 9.6 μm, Espe- Mars’ obliquity of 24° and the elliptic orbit with peri- nak et al. (1991) detected ozone at low latitudes with the helion at 1.381 AU (LS = 251°) and aphelion at 1.666 AU column abundance of ~1 μm-atm at LS = 208°. These ob- (LS = 71°) induce a great variety of conditions in the servations have been continued (Fast et al., 2006, 2009). To comparatively thin atmosphere of Mars. A summary of improve the ozone detection at large airmass, Clancy et al. observational data on the chemical composition of the (1999) observed the UV spectra of Mars near the limb using martian atmosphere is given in Table 2. Groundbased de- the Hubble Space Telescope (HST). Some data from Fast tections of the parent species CO2 (Kuiper, 1949) and H2O et al. (2006) and Clancy et al. (1999) are shown in Fig. 2. (Spinrad et al., 1963) and the main photochemical products Clancy and Nair (1996) predicted significant seasonal CO (Kaplan et al., 1969) and O2 (Barker, 1972; Carleton variations of ozone above 20 km at the low and middle and Traub, 1972) were a basis for the first photochemical latitudes. Krasnopolsky (1997) argued that the O2 dayglow models. Observations of O3 by the Mariner 9 ultraviolet at 1.27 μm is the best tracer for that ozone, because the (UV) spectrometer (Barth et al., 1973) revealed strong dayglow is quenched by CO2 below ~20 km, and started variations in Mars’ photochemistry (Fig. 1). The ozone groundbased mapping observations of this dayglow (Figs. 3, UV absorption band at 255 nm has a halfwidth of 40 nm, 4). Interpretation of the groundbased observations of ozone the solar light varies within the band by a factor of ~15, and the O2 dayglow at 1.27 μm does not require any as- the surface reflection and dust properties may vary as well, sumptions regarding reflectivities of the surface rocks and and the Mariner team adopted an upper limit of 3 μm-atm atmospheric dust. TABLE 1. Basic properties of Venus, Earth, Mars, and Titan. Property Venus Earth Mars Titan Mean distance from Sun (AU) 0.72 1.0 1.52 9.54 Radius (km) 6052 6378 3393 2575 Mass (Earth = 1) 0.815 1 0.1075 0.0225 Length of year 224.7 d 365.26 d 1.881 yr 29.42 yr Gravity (cm s–2) 887 978 369 135 Mean atmospheric pressure (bar) 92 1.0 0.0061 1.5 Mean temperature near surface (K) 737 288 210 94 Mean exobase altitude (km) 200 400 200 1350 Mean exospheric temperature (K) 260 1000 230 160 Escape velocity (km s–1) 10.3 11.2 5.0 2.64 Main gas CO2 (0.96) N2 (0.78) CO2 N(0.96) 2 (0.95) Second gas N2 (0.034) O2 (0.21) N2 (0.019) CH4 (0.05) –4 Third gas SO2 (1.3 × 10 ) Ar (0.0093) Ar (0.019) H2 (0.001) Atmospheric composition is given near the surface; mixing ratios are in parentheses. Krasnopolsky and Lefèvre: Chemistry of Atmospheres 3 Hydrogen (H2) was predicted by photochemistry as a Peroxide H2O2 was detected using groundbased mi- long-living product on Mars, and it had been detected using crowave and infrared instruments, and a summary of the the Far Ultraviolet Spectroscopic Explorer (FUSE) (Kras- current data is in Fig. 6. Along with ozone and the O2 nopolsky and Feldman, 2001). Continuous monitoring of dayglow, H2O2 is a sensitive tracer of Mars’ photochemistry, temperature profiles, 2H O, water ice, and dust atmospheric especially odd hydrogen chemistry.
Recommended publications
  • The Geology of the Rocky Bodies Inside Enceladus, Europa, Titan, and Ganymede
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2905.pdf THE GEOLOGY OF THE ROCKY BODIES INSIDE ENCELADUS, EUROPA, TITAN, AND GANYMEDE. Paul K. Byrne1, Paul V. Regensburger1, Christian Klimczak2, DelWayne R. Bohnenstiehl1, Steven A. Hauck, II3, Andrew J. Dombard4, and Douglas J. Hemingway5, 1Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA ([email protected]), 2Department of Geology, University of Georgia, Athens, GA 30602, USA, 3Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106, USA, 4Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA, 5Department of Earth & Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA. Introduction: The icy satellites of Jupiter and horizontal stresses, respectively, Pp is pore fluid Saturn have been the subjects of substantial geological pressure (found from (3)), and μ is the coefficient of study. Much of this work has focused on their outer friction [12]. Finally, because equations (4) and (5) shells [e.g., 1–3], because that is the part most readily assess failure in the brittle domain, we also considered amenable to analysis. Yet many of these satellites ductile deformation with the relation n –E/RT feature known or suspected subsurface oceans [e.g., 4– ε̇ = C1σ exp , (6) 6], likely situated atop rocky interiors [e.g., 7], and where ε̇ is strain rate, C1 is a constant, σ is deviatoric several are of considerable astrobiological significance. stress, n is the stress exponent, E is activation energy, R For example, chemical reactions at the rock–water is the universal gas constant, and T is temperature [13].
    [Show full text]
  • The Mystery of Methane on Mars and Titan
    The Mystery of Methane on Mars & Titan By Sushil K. Atreya MARS has long been thought of as a possible abode of life. The discovery of methane in its atmosphere has rekindled those visions. The visible face of Mars looks nearly static, apart from a few wispy clouds (white). But the methane hints at a beehive of biological or geochemical activity underground. Of all the planets in the solar system other than Earth, own way, revealing either that we are not alone in the universe Mars has arguably the greatest potential for life, either extinct or that both Mars and Titan harbor large underground bodies or extant. It resembles Earth in so many ways: its formation of water together with unexpected levels of geochemical activ- process, its early climate history, its reservoirs of water, its vol- ity. Understanding the origin and fate of methane on these bod- canoes and other geologic processes. Microorganisms would fit ies will provide crucial clues to the processes that shape the right in. Another planetary body, Saturn’s largest moon Titan, formation, evolution and habitability of terrestrial worlds in also routinely comes up in discussions of extraterrestrial biology. this solar system and possibly in others. In its primordial past, Titan possessed conditions conducive to Methane (CH4) is abundant on the giant planets—Jupiter, the formation of molecular precursors of life, and some scientists Saturn, Uranus and Neptune—where it was the product of chem- believe it may have been alive then and might even be alive now. ical processing of primordial solar nebula material. On Earth, To add intrigue to these possibilities, astronomers studying though, methane is special.
    [Show full text]
  • Infrared Experiments for Spaceborne Planetary Atmospheres Research Full Report
    NASA Technical Memorandum 84414 Infrared Experiments for Spaceborne Planetary Atmospheres Research Full Report Infrared Experiments Working Group NOVEMBER 1981 NASA NASA Technical Memorandum 84414 Infrared Experiments for Spaceborne Planetary Atmospheres Research Full Report Infrared Experiments Working Group Jet Propulsion Laboratory Pasadena, California NASA National Aeronautics and Space Administration Scientific and Technical Information Branch 1981 TABLE OF CONTENTS Preface Summary of Principal Conclusions and Recommendations Chapter I The Role of Infrared Sensing in Atmospheric Science Chapter II Review of Existing Infrared Measurement Techniques Chapter III Critical Comparison of Proposed Measurement Techniques Chapter IV Conclusions and Recommended Instrument Developments Appendices: A Critical Technologies B Applicability of Atmospheric Infrared Instrumentation to Surface Science C Supporting Studies in Data Analysis and Numerical Modeling D Description of Planned Earth Orbital Platforms ii PREFACE Experiments conducted in the infrared spectral region provide a powerful tool for the study of the composition, structure and dynamics of planetary atmospheres. However, the field has become highly complex, especially that part associated with spacecraft sensing, and the range of technologies used so diverse that it is difficult to determine which of the available methods for making a particular measurement is to be preferred, even for those deeply involved in the field. Unfortunately, the realities of the age demand that some selectivity be employed; not all approaches can be supported. Furthermore, the chosen methods are generally sufficiently untried that long pre-flight developments are neces- sary if viable proposals are to be written for future flight opportunities. These considerations clearly lead to a program of developments which must be coordinated on a national scale.
    [Show full text]
  • Atmospheric Dust on Mars: a Review
    47th International Conference on Environmental Systems ICES-2017-175 16-20 July 2017, Charleston, South Carolina Atmospheric Dust on Mars: A Review François Forget1 Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Universités, UPMC Univ Paris 06, PSL Research University, Ecole Normale Supérieure, Université Paris-Saclay, Ecole Polytechnique, CNRS, Paris, France Luca Montabone2 Laboratoire de Météorologie Dynamique (LMD/IPSL), Paris, France & Space Science Institute, Boulder, CO, USA The Martian environment is characterized by airborne mineral dust extending between the surface and up to 80 km altitude. This dust plays a key role in the climate system and in the atmospheric variability. It is a significant issue for any system on the surface. The atmospheric dust content is highly variable in space and time. In the past 20 years, many investigations have been conducted to better understand the characteristics of the dust particles, their distribution and their variability. However, many unknowns remain. The occurrence of local, regional and global-scale dust storms are better documented and modeled, but they remain very difficult to predict. The vertical distribution of dust, characterized by detached layers exhibiting large diurnal and seasonal variations, remains quite enigmatic and very poorly modeled. Nomenclature Ls = Solar Longitude (°) MY = Martian year reff = Effective radius τ = Dust optical depth (or dust opacity) CDOD = Column Dust Optical Depth (i.e. τ integrated over the atmospheric column) IR = Infrared LDL = Low Dust Loading (season) HDL = High Dust Loading (season) MGS = Mars Global Surveyor (NASA spacecraft) MRO = Mars Reconnaissance Orbiter (NASA spacecraft) MEX = Mars Express (ESA spacecraft) TES = Thermal Emission Spectrometer (instrument aboard MGS) THEMIS = Thermal Emission Imaging System (instrument aboard NASA Mars Odyssey spacecraft) MCS = Mars Climate Sounder (instrument aboard MRO) PDS = Planetary Data System (NASA data archive) EDL = Entry, Descending, and Landing GCM = Global Climate Model I.
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • Case Fil Copy
    NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program.
    [Show full text]
  • Mineralogy of the Martian Surface
    EA42CH14-Ehlmann ARI 30 April 2014 7:21 Mineralogy of the Martian Surface Bethany L. Ehlmann1,2 and Christopher S. Edwards1 1Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125; email: [email protected], [email protected] 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Annu. Rev. Earth Planet. Sci. 2014. 42:291–315 Keywords First published online as a Review in Advance on Mars, composition, mineralogy, infrared spectroscopy, igneous processes, February 21, 2014 aqueous alteration The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The past fifteen years of orbital infrared spectroscopy and in situ exploration 10.1146/annurev-earth-060313-055024 have led to a new understanding of the composition and history of Mars. Copyright c 2014 by Annual Reviews. Globally, Mars has a basaltic upper crust with regionally variable quanti- by California Institute of Technology on 06/09/14. For personal use only. All rights reserved ties of plagioclase, pyroxene, and olivine associated with distinctive terrains. Enrichments in olivine (>20%) are found around the largest basins and Annu. Rev. Earth Planet. Sci. 2014.42:291-315. Downloaded from www.annualreviews.org within late Noachian–early Hesperian lavas. Alkali volcanics are also locally present, pointing to regional differences in igneous processes. Many ma- terials from ancient Mars bear the mineralogic fingerprints of interaction with water. Clay minerals, found in exposures of Noachian crust across the globe, preserve widespread evidence for early weathering, hydrothermal, and diagenetic aqueous environments. Noachian and Hesperian sediments include paleolake deposits with clays, carbonates, sulfates, and chlorides that are more localized in extent.
    [Show full text]
  • Planetary Science
    Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft.
    [Show full text]
  • Complete List of Contents
    Complete List of Contents Volume 1 Cape Canaveral and the Kennedy Space Center ......213 Publisher’s Note ......................................................... vii Chandra X-Ray Observatory ....................................223 Introduction ................................................................. ix Clementine Mission to the Moon .............................229 Preface to the Third Edition ..................................... xiii Commercial Crewed vehicles ..................................235 Contributors ............................................................. xvii Compton Gamma Ray Observatory .........................240 List of Abbreviations ................................................. xxi Cooperation in Space: U.S. and Russian .................247 Complete List of Contents .................................... xxxiii Dawn Mission ..........................................................254 Deep Impact .............................................................259 Air Traffic Control Satellites ........................................1 Deep Space Network ................................................264 Amateur Radio Satellites .............................................6 Delta Launch Vehicles .............................................271 Ames Research Center ...............................................12 Dynamics Explorers .................................................279 Ansari X Prize ............................................................19 Early-Warning Satellites ..........................................284
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • National Reconnaissance Office Review and Redaction Guide
    NRO Approved for Release 16 Dec 2010 —Tep-nm.T7ymqtmthitmemf- (u) National Reconnaissance Office Review and Redaction Guide For Automatic Declassification Of 25-Year-Old Information Version 1.0 2008 Edition Approved: Scott F. Large Director DECL ON: 25x1, 20590201 DRV FROM: NRO Classification Guide 6.0, 20 May 2005 NRO Approved for Release 16 Dec 2010 (U) Table of Contents (U) Preface (U) Background 1 (U) General Methodology 2 (U) File Series Exemptions 4 (U) Continued Exemption from Declassification 4 1. (U) Reveal Information that Involves the Application of Intelligence Sources and Methods (25X1) 6 1.1 (U) Document Administration 7 1.2 (U) About the National Reconnaissance Program (NRP) 10 1.2.1 (U) Fact of Satellite Reconnaissance 10 1.2.2 (U) National Reconnaissance Program Information 12 1.2.3 (U) Organizational Relationships 16 1.2.3.1. (U) SAF/SS 16 1.2.3.2. (U) SAF/SP (Program A) 18 1.2.3.3. (U) CIA (Program B) 18 1.2.3.4. (U) Navy (Program C) 19 1.2.3.5. (U) CIA/Air Force (Program D) 19 1.2.3.6. (U) Defense Recon Support Program (DRSP/DSRP) 19 1.3 (U) Satellite Imagery (IMINT) Systems 21 1.3.1 (U) Imagery System Information 21 1.3.2 (U) Non-Operational IMINT Systems 25 1.3.3 (U) Current and Future IMINT Operational Systems 32 1.3.4 (U) Meteorological Forecasting 33 1.3.5 (U) IMINT System Ground Operations 34 1.4 (U) Signals Intelligence (SIGINT) Systems 36 1.4.1 (U) Signals Intelligence System Information 36 1.4.2 (U) Non-Operational SIGINT Systems 38 1.4.3 (U) Current and Future SIGINT Operational Systems 40 1.4.4 (U) SIGINT
    [Show full text]
  • Identification of Volcanic Rootless Cones, Ice Mounds, and Impact 3 Craters on Earth and Mars: Using Spatial Distribution As a Remote 4 Sensing Tool
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, XXXXXX, doi:10.1029/2005JE002510, 2006 Click Here for Full Article 2 Identification of volcanic rootless cones, ice mounds, and impact 3 craters on Earth and Mars: Using spatial distribution as a remote 4 sensing tool 1 1 1 2 3 5 B. C. Bruno, S. A. Fagents, C. W. Hamilton, D. M. Burr, and S. M. Baloga 6 Received 16 June 2005; revised 29 March 2006; accepted 10 April 2006; published XX Month 2006. 7 [1] This study aims to quantify the spatial distribution of terrestrial volcanic rootless 8 cones and ice mounds for the purpose of identifying analogous Martian features. Using a 9 nearest neighbor (NN) methodology, we use the statistics R (ratio of the mean NN distance 10 to that expected from a random distribution) and c (a measure of departure from 11 randomness). We interpret R as a measure of clustering and as a diagnostic for 12 discriminating feature types. All terrestrial groups of rootless cones and ice mounds are 13 clustered (R: 0.51–0.94) relative to a random distribution. Applying this same 14 methodology to Martian feature fields of unknown origin similarly yields R of 0.57–0.93, 15 indicating that their spatial distributions are consistent with both ice mound or rootless 16 cone origins, but not impact craters. Each Martian impact crater group has R 1.00 (i.e., 17 the craters are spaced at least as far apart as expected at random). Similar degrees of 18 clustering preclude discrimination between rootless cones and ice mounds based solely on 19 R values.
    [Show full text]