Binary Evolution and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Binary Evolution and Its Applications Binary Evolution and its Applications Zhanwen HAN Yunnan Observatories of the CAS Collaborators: X. Chen, L. Li, F. Zhang, B. Wang, X. Meng, D. Jiang, H. Ge, Y. Han, H. Chen, Z. Liu, J. Liu, S. Yu R. Webbink, Ph. Podsiadlowski, A. Lynas-Gray, L. Yungelson, M. Gilfanov, T.E. Wood, G. Stephan, 22-Mar-2018 KIAA 1 1 …… Outline • Binary evolution • Binary-related objects • Evolutionary population synthesis • Future perspectives 22-Mar-2018 KIAA 2 Outline • Binary evolution • Binary-related objects • Evolutionary population synthesis • Future perspectives 22-Mar-2018 KIAA 3 Stellar evolution 22-Mar-2018 KIAA 4 Half of the stars are in binaries 50% in binaries Duchêne & Kraus 2013 , ARA&A 22-Mar-2018 KIAA 5 Binary interaction dominates the evolution of massive stars Sana et al 2012 Sci 22-Mar-2018 KIAA 6 Binary Evolution 22-Mar-2018 KIAA 7 Stable RLOF WD MS 22-Mar-2018 KIAA 8 Dynamically unstable RLOF CE Ejection Merger WD MS 22-Mar-2018 KIAA 9 Binary Evolution Flow Chart 22-Mar-2018 KIAA 10 Binary evolution produces extotic objects Type Ia double BH Double degenerates supernovae Blue stragglers X-ray binaries Bipoar PNe 22-Mar-2018 KIAA 11 Basic problems: Dynamically unstable RLOF Stable RLOF CE CE ejection Merger 22-Mar-2018 KIAA 12 Basic problems: mass transfer stability? CE evolution? 22-Mar-2018 KIAA 13 RLOF Stabilility criterion models • Polytropic model (Hjellming+ 1987, Webbink 1988) • detailed binary evolution calculation model (Pavlovskii+ 2015, 2017) • Adiabatic mass loss model (Ge+ 2010, 2015) 22-Mar-2018 KIAA 14 Mass transfer in Binaries Critical equipotential surface Roche lobe radius: L1 q=M1/M2 Eggleton, 1983, ApJ loser M1 accretor M2 Response of the loser VS Response of the Roche lobe ln R1 ln R1 ln RL th |th | L lnM |RLOF lnM1 ad lnM1 ad 1 ( ad , th ) L Nuclear Timescale MT(driven by nuclear burning) ad L th Thermal timescale MT(driven by recovery of thermal equilibrium) L ad Dynamical timescale MT(constrained by hydrostatic equilibrium only) Stellar Structure Equations in the adiabatic Equations mass loss model hydrostatic equilibrium Mass continuity Adiabatic assumption ln R1 | ad lnM1 ad Energy equations Ge+, 2010 Dynamical timescale MT 22-Mar-2018L ad KIAA 16 Response of a 1.00M⊙ star to adiabatic mass loss 22-Mar-2018 KIAA 17 qc for FGB or AGB donors Ge+, 2015 Ge+, in prep Before: qc~1 CE only AGB Now: from 1.4-5 Radius Log Both CE and RLOF HG MS FGB Non-conservative 22-Mar-2018 KIAA Log Mass 18 Common Envelope Evolution (CEE) 22-Mar-2018 KIAA Ivanova 19 Common Envelope Evolution 抛射 SPH simulations are difficult ! merger ejection 22-Mar-2018 KIAA 20 Common Envelope Evolution Parameterized ! CEE orb E bind E gr thEth E E gr and th are integrated for the envelope 22-Mar-2018 KIAA 21 Outline • Binary evolution • Binary-related objects • Evolutionary population synthesis • Future perspectives 22-Mar-2018 KIAA 22 ELM WDs : Extremely low-mass white dwarfs Brown+, 2010, ApJ gravity 5< log g < 7 8000 K < Teff <22000 K M < 0.25-0.3 M☉ 22-Mar-2018 Effective temperature 23 Period distribution Observations I.The ELM Survey (Brown, Kilic et al. 2009--, SAO, 6.5 m MMT) • 88 ELM WDs, of which 76 being in binaries • Half of the observed binaries will merge in less than 6Gyr Brown et al. 2016, ApJ II. The WASP Project Maxted et al. • The 1st sample: 1SWASP J024743.37-251549.2 ( 2011 MNRAS) • Multiple-period pulsations (2013, Nature) • 17 EL CVn-type binaries (2014, MNRAS) III.Kepler transit • The first two:KOI-74, KOI-81 (van Kerkwijk+,2010) occultation • 7 objects in total (Rappaport+,2015, Guo+, 2017) Light Curve KOI-74 VI. ELM in MSPs (>10) Istrate+, 2014, 2016 22-Mar-2018 KIAA 24 The pre-ELM WD instability strip Diven by He++,He+, H+ 1SWASP J024743.37-251549.2 l=0 l=1 Corsico+, 2016, A&A l=2 CO-core Maxted+, 2013, Nature ZZ Ceti stars KIC 9164561 CO-core ZZ Ceti stars Zhang,X.+, 2016, ApJ 22-Mar-2018 KIAA Gianninas+, 2016, ApJ 25 Formation of extremely low-mass WDs Binary Evolution common envelope ejection stable mass transfer Beyond but very close to the bifurcation period 22-Mar-2018 KIAA 26 ELM WD mass VS orbital period (for 62 double degenerates) Z. Li,+ 22-Mar-2018 ELMKIAA WD Mass 27 EL CVn-type Binaries A/F dwarf star + proto-He WD Maxted et al. 2014 , MNRAS The hot small companion: extremely low mass (~0.2Msun) transit in an evolutionary phase that should be rare observed The hot small companion 17 EL CVn-type binaries have been found has been occulted. by Maxted et al. from the WASP observations. 22-Mar-2018 KIAA 28 The formation of EL CVn-type binaries Parameter space Chen X. et al 2017 , MNRAS, 464, 1874 Evolutionary tracks Predictions: More EL CVn-type binaries will be found in the Galaxy. The are more likely in the thin disk. 22-Mar-2018 KIAA 29 (The peak mass for the progenitors is in ~1.1-1.3Msun) Predictions of the model Introduction for the model Space density : in line with Chen et al. 22-Mar-2018 Position : as suggested/predictedKIAA by Chen et al. 30 KIC 8262223 Z. Guo, D. Gies, R. Mstson et al (2017, ApJ) ellipsoidal deep eclipses ● delta Scuti pulsation ● 31 Eclipsing Binary Millisecond Pulsars Discovered by Fermi Two distinct populations The masses of the companions are very low, then they should be small. How to produce the eclipses ?ta periods between 0.1 and de Both populations have orbital periods between 0.1 and 1.0 days, 22their-Mar-2018 companion masses differKIAA by an order of magnitude.Why?32 Chen H., Chen X., Tauris, Han, 2013, ApJ, 775, 27 Pulsar irradiation and evaporation of the companions are crucial for the formation of eclipsing MSPs The determining factor for the producing the two populations is the efficiency of the irradiation process. 22-Mar-2018 KIAA 33 widely accepted in this field Dick Manchester 《Physics of neutron stars and Related objects》(2017, JApA, 38, 42): 22-Mar-2018 KIAA 34 SNe Ia Thermonuclear Explosions of CO WDs at ~1.4Msun carbon ignition under degenerate conditions thermonuclear runaway 51 incineration and complete destruction of the star 10 ergs 22-Mar-2018 KIAA 35 Phillips Relation (Phillips, 1993): empirical Luminosity 22-Mar-2018 KIAA time 36 SNe Ia as distance indicators 22-Mar-2018 KIAA 37 Accretion of WDs The mass of CO WDs at birth is less than ~1.1Msun . (~0.6Msun) Accretion is necessary for final explosions . How to accrete ? and when to explode ? 22-Mar-2018 KIAA 38 Maximum CO WD mass at birht: 1.1Msol Chen+ 2014, MNRAS When does C ignition occur ? Tmax ↑ while keeping ρ constant. Mwd=0.8Msol tb tc tcool=10^8 yrs tcool=10^9yrs CO WD structure during accretion Chen+ 2014 22-Mar-2018 KIAA 40 Progenitor models of SNe Ia Single-degenerate (SD) channel: accreting from non-degenerate companion CO WD + MS CO WD + RG CO WD + He Star Double-degenerate (DD) channel: Two CO WDs with a combined mass greater than 1.4Msun merge CO WD + CO WD Credit: GSFC/Dana Berry 22-Mar-2018 KIAA 41 Helium donor channel (WD+He) Wang+ 2009, 2010 Birthrate Time delay Properties of Progenitors Properties of remnant stars …… Sun MW centre US 708 Explain young SNe Ia Hypervelocity star 22-Mar-2018 Geier+, 2015, Science 42 SN Ia rates for single star burst Wang+ 2010 Observations: Totani+ 2008 22-Mar-2018 KIAA 43 Stellar mass double BHs Massive binary evolution is the key scenario for their formation CE evolution Contact binary evolutin GC dynamics ~218 Gpc-3yr-1 ~10 Gpc-3yr-1 ~6.5 Gpc-3yr-1 ~1000 yr-1by second LIGO ~500 yr-1 by second LIGO VFTS 352: 29 Msun+29 Msun with P=1.12 d 44 Observation Theory 22-Mar-2018 KIAA 45 Distributions of masses, mass ratios, orbital periods of Galactic DWDs with BPS approach double WDs M1 M2 M1 log(P) q Han 1998 log(P) 22-Mar-2018 KIAA 46 Spectral density of GW amplitude LISA 22-Mar-2018 KIAA 47 Resolvable DWDs with LISA S/N=5 S/N=1 Liu+ 2009, ApJ 22-Mar-2018 KIAA 48 Resolvable NS+WD,NS+NS, BH+NS,BH+BH with eLISA eLISA LISA 22-Mar-2018 KIAA Liu+ 2014 49 Blue stragglers Temperature Temperature HR diagram 22-Mar-2018 KIAA 50 Chen+ Sills+ 22-Mar-2018 KIAA 51 Two blue stragglers sequences in M30 Ferraro+, 2009, Nature ZAMS Binary evolution collision 22-Mar-2018 KIAA 52 Binary evolution may produce both of the sequences Blue sequence Red sequences 22-Mar-2018 KIAA 53 Blue stragglers with BPS Red points: observed BSs in M30 Red circles: addition BSs Jiang+, 2017, ApJ 22-Mar-2018 KIAA 54 hot subdwarf stars RHB BHB He L hot subdwarfs EHB M ~ 0.5M⊙ T Menv 0.02M⊙ Extreme Horizontal Branch stars 22-Mar-2018 KIAA 55 Binary model: stable RLOF 22-Mar-2018 KIAA 56 Binary model: CE ejection 22-Mar-2018 KIAA 57 Binary model: He WD merger 22-Mar-2018 KIAA 58 The model can reproduce: • (Log P, Mcomp) • (Teff, log g) • P • Log (g/Teff^4) • Mass function • Birthrate • Number density • Fraction of sdB+MS • Fraction of close sdB binaries • …… 22-Mar-2018 KIAA 59 Predictions: sdB binaries with long orbital periods Larger mass range 22-Mar-2018 KIAA 60 Outline • Binary evolution • Binary-related objects • Evolutionary population synthesis • Future perspectives 22-Mar-2018 KIAA 61 What is EPS? Evolutionary Population Synthesis (EPS) is an approach to derive the physical parameters of stellar populations of galaxies from the Spectral Energy Distributions(SEDs) observed.
Recommended publications
  • Clues on the Origin and Evolution of Massive Contact Binaries: Atmosphere Analysis of VFTS 352
    Draft version June 5, 2019 Typeset using LATEX twocolumn style in AASTeX62 Clues on the Origin and Evolution of Massive Contact Binaries: Atmosphere Analysis of VFTS 352 Michael Abdul-Masih,1 Hugues Sana,1 Jon Sundqvist,1 Laurent Mahy,1 Athira Menon,2 Leonardo A. Almeida,3 Alex De Koter,1, 2 Selma E. de Mink,2 Stephen Justham,2, 4 Norbert Langer,5 Joachim Puls,6 Tomer Shenar,1 and Frank Tramper7 1Institute of Astrophysics, KULeuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium 2Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam, The Netherlands 3Departamento de F´ısicaTe´oricae Experimental, Universidade Federal do Rio Grande do Norte, CP 1641, Natal, RN, 59072-970, Brazil 4School of Astronomy & Space Science, University of the Chinese Academy of Sciences, Beijing 100012, China 5Argelander-Institut f¨urAstronomie, Universit¨atBonn, Auf dem H¨ugel 71, 53121 Bonn, Germany 6LMU M¨unchen, Universit¨atssternwarte, Scheinerstr. 1, 81679 M¨unchen, Germany 7Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing, National Observatory of Athens, P. Penteli, 15236 Athens, Greece (Received February 23, 2019; Revised -; Accepted May 25, 2019) Submitted to ApJ ABSTRACT The massive O4.5 V + O5.5 V binary VFTS 352 in the Tarantula nebula is one of the shortest-period and most massive overcontact binaries known. Recent theoretical studies indicate that some of these systems could ultimately lead to the formation of gravitational waves via black hole binary mergers through the chemically homogeneous evolution pathway. By analyzing ultraviolet-optical phase-resolved spectroscopic data, we aim to constrain atmospheric and wind properties that could be later used to confront theoretical predictions from binary evolution.
    [Show full text]
  • VLT-FLAMES Tarantula Survey
    VLT-FLAMES Tarantula Survey Alex de Koter University of Amsterdam & KU Leuven C.J. Evans (PI), W.D. Taylor, V. Hénault-Brunet, H. Sana, A. de Koter (O-star coordinator), S. Simón- Díaz, G. Carraro, T. Bagnoli, N. Bastian, J.M. Bestenlehner, A.Z. Bonanos, E. Bressert, I. Brott, M.A. Campbell, M. Cantiello, J.S. Clark, E. Costa, P.A. Crowther, S.E. de Mink, E. Doran, P.L. Dufton (B-star coordinator), P.R. Dunstall, K. Friedrich, M. Garcia, M. Gieles, G. Gräfener, A. Herrero, I.D. Howarth, R. G. Izzard, N. Langer, D.J. Lennon, J. Maíz Apellániz, N. Markova, F. Najarro, J. Puls, O.H. Ramirez, C. Sabín-Sanjulián, S.J. Smartt, V.E. Stroud, J.Th. van Loon, J.S. Vink, N.R. Walborn VLT-FLAMES Tarantula Survey PI: C. Evans Main catalogues Dynamics of the central region 1. Observing campaign and YSOs (Evans+2011) 11. Evidence for cluster rotation 2. Spectral typing & special categories (Walborn+2014) (Hénault-Brunet+ 2012a) 20XX) 12. R136 is virialized (Hénault-Brunet+ 2012b) 20XX) Individual objects Population properties 3. VFTS 016: most massive runaway star (Evans+2010) 13-14. Spin of the single O & B stars 4. R139: most massive evolved O-star pair (Taylor+2011) (Dufton+ 2013, Ramírez-Agudelo+2013) 4. VFTS 102: fastest spinning O star (Dufton+2011) 15. Spin of O star primaries (Ramírez-Agudelo+ in prep) 4. VFTS 698: peculiar B[e] supergiant (Dunstall+2012) 16-17. Multiplicity of the O & B stars (Sana+2013, Dunstall+2015) 5. VFTS 682: a 150 M star in appartent isolation (Bestenlehner+2011) 18.
    [Show full text]
  • The VLT-FLAMES Tarantula Survey
    Astronomical Science DOI: 10.18727/0722-6691/5207 The VLT-FLAMES Tarantula Survey Chris Evans 1 10 University of Amsterdam, radial-velocity shifts arising from binary Daniel Lennon 2 The Netherlands motion. Here we summarise some of Norbert Langer 3, 4 11 KU Leuven, Belgium the highlights from the survey and look Leonardo Almeida 5 12 CfA, Harvard-Smithsonian, Cambridge, ahead to the future of the field. Elizabeth Bartlett 1 MA, USA Nate Bastian 6 13 Queen’s University Belfast, Joachim Bestenlehner 7 Northern Ireland Massive stars have long captured our Nikolay Britavskiy 2 14 IWF, Austrian Academy of Sciences, imagination. In stark contrast to the his- Norberto Castro 8 Graz, Austria tory and fate of the Sun, stars born with 9 15 Simon Clark CAB, CSIC-INTA, Madrid, Spain masses in excess of ~ 8 M⊙ quickly fuse Paul Crowther 7 16 ICCUB-IEEC, Universitat de Barcelona, their hydrogen into helium and heavier Alex de Koter 10, 11 Spain elements on timescales of millions rather Selma de Mink 12 17 ICREA, Barcelona, Spain than billions of years. They evolve into Philip Dufton 13 18 Saint Mary’s University, Halifax, NS, classical Wolf-Rayet stars, luminous blue Luca Fossati 14 Canada supergiants (for example, Rigel), and/or Miriam Garcia 15 19 Universidad de La Laguna, Tenerife, bloated, cool red supergiants (for exam- Mark Gieles 16, 17 Spain ple, Betelgeuse), before exploding cata- Götz Gräfener 3 20 University College London, UK strophically as supernovae. Massive stars Nathan Grin 3 21 University of Surrey, UK are a key ingredient in models of galaxy Vincent Hénault-Brunet 18 22 Gemini Observatory, La Serena, Chile; evolution.
    [Show full text]
  • Dr. S. (Selma) E. De Mink Astrophysicist - Macgillavry Assistant Professor Anton Pannekoek Instituut Voor Sterrenkunde, Univ
    CURRICULUM VITAE Dr. S. (Selma) E. de Mink Astrophysicist - MacGillavry Assistant Professor Anton Pannekoek Instituut voor Sterrenkunde, Univ. of Amsterdam, PO Box 94249, 1090 GE Amsterdam, The Netherlands [email protected] / http://www.selmademink.com INTEREST/EXPERTISE (IN NO PARTICULAR ORDER) Stellar Physics, Stellar evolution, Stellar evolution under extreme conditions Stellar Transients, Progenitors of Supernovae and Gamma-ray bursts Gravitational Wave Astrophysics, Astrophysical sources and their progenitors Binary Interaction, Binary Mergers, X-ray binaries Nucleosynthesis, Abundances, Chemical Enrichment Spectral synthesis, Radiative and Mechanical Feedback by stellar populations Surveys of stellar populations (nearby and at high redshift) and stellar transients Diversity in Academia, Participation of Women in Theoretical and Computational Astrophysics RESEARCH POSITIONS 2014 – now MacGillavry Assistant Professor, University of Amsterdam, NL • PI of VIDI grant BinWaves (2018-2023) • PI of the ERC starting grant BinCosmos (2017-2022) • Marie Curie Incoming Fellowship (2015-2017) 2013 – 2014 Einstein & Princeton Lyman Spitzer Fellow (Combined prize felloWships, 100% independent research) California Institute for Technology & Carnegie Observatories, Pasadena, CA, USA 2010 – 2013 Hubble postdoctoral Fellow (NASA prize felloWship, 100% independent research) Space Telescope Science Institute, Baltimore, MD, USA 2010 Argelander Postdoctoral Fellow Institute for Astronomy, University of Bonn, Germany 2006-2010 PhD Student, Utrecht University,
    [Show full text]
  • Final Kiss of Two Stars Heading for Catastrophe 21 October 2015
    Final kiss of two stars heading for catastrophe 21 October 2015 than a day. The centres of the stars are separated by just 12 million kilometres. In fact, the stars are so close that their surfaces overlap and a bridge has formed between them. VFTS 352 is not only the most massive known in this tiny class of "overcontact binaries"—it has a combined mass of about 57 times that of the Sun—but it also contains the hottest components—with surface temperatures above 40 000 degrees Celsius. Extreme stars like the two components of VFTS 352, play a key role in the evolution of galaxies and are thought to be the main producers of elements such as oxygen. Such double stars are also linked This artist's impression shows VFTS 352 -- the hottest to exotic behaviour such as that shown by "vampire and most massive double star system to date where the stars", where a smaller companion star sucks two components are in contact and sharing material. The matter from the surface of its larger neighbour two stars in this extreme system lie about 160,000 light- (eso1230). years from Earth in the Large Magellanic Cloud. This intriguing system could be heading for a dramatic end, In the case of VFTS 352, however, both stars in the either with the formation of a single giant star or as a system are of almost identical size. Material is, future binary black hole. Credit: ESO/L. Calcada therefore, not sucked from one to another, but instead may be shared. The component stars of VFTS 352 are estimated to be sharing about 30 per cent of their material.
    [Show full text]
  • Massive Stars - Binaries, Wolf-Rayets, and the Early Universe Connection
    Massive stars - binaries, Wolf-Rayets, and the Early Universe connection Frank Tramper European Space Astronomy Centre - Madrid ESA UNCLASSIFIED - For Official Use Introduction - Massive stars • > ~8 solar masses • Rare and short-lived, but key players in the Universe • Strong impact on their surroundings • Dominant sources of momentum (stellar winds and SNe) • Strong ionizing radiation • May halt or start star formation • Chemical enrichment: main producers of alpha-elements (C, O, etc.) • Re-ionization of the Universe ESA UNCLASSIFIED - For Official Use 2 Introduction - Massive stars • Progenitors of: • Hypernovae • (long) Gamma-ray burst • X-ray binaries • Gravitational wave sources • Evolution dominated by: • Mass-loss • Rotation } Metallicity • Binary interactions ESA UNCLASSIFIED - For Official Use 3 Eta Carinae Massive star evolution 106.5 120 M 85 M WNh 6 60 M 10 40 M 5.5 10 25 M cWR 20 M 105 OB stars Zero-Age Main Sequence 15 M RSG 104.5 12 M Luminosity (solar units) 4 10 9M WR124 103.5 ESA UNCLASSIFIED - For Official Use 100 000 30 000 10 000 5 000 3 000 4 Surface temperature (K) But… binaries! • Massive stars like company: 91% of nearby O stars has one or more companions (on average 2.1 companions; Sana+ 2014) • Interactions dominate massive star evolution: 71% of all stars born as O-type will interact during their lifetime (Sana+ 2012) Sana+ 2012 de Mink+ 2014 ESA UNCLASSIFIED - For Official Use 5 I - Very Massive Binaries ESA UNCLASSIFIED - For Official Use 6 Very massive binaries • Binaries offer the most accurate
    [Show full text]
  • International Astronomical Union Commission G1 BIBLIOGRAPHY
    International Astronomical Union Commission G1 BIBLIOGRAPHY OF CLOSE BINARIES No. 109 Editor-in-Chief: W. Van Hamme Editors: R.H. Barb´a D.R. Faulkner P.G. Niarchos D. Nogami R.G. Samec C.D. Scarfe C.A. Tout M. Wolf M. Zejda Material published by September 15, 2019 BCB issues are available at the following URLs: http://ad.usno.navy.mil/wds/bsl/G1_bcb_page.html, http://faculty.fiu.edu/~vanhamme/IAU-BCB/. The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a. Catalogues b. Discoveries of new binaries and novae c.
    [Show full text]
  • API Publications 2016-2019
    2016 King, A. and Muldrew, S. I., Black hole winds II: Hyper-Eddington winds and feedback, 2016, MNRAS, 455, 1211 Carbone, D., Exploring the transient sky: from surveys to simulations, 2016, AAS, 227, 421.03 van den Heuvel, E., The Amazing Unity of the Universe, 2016 (book), Springer Ellerbroek, L. E. ., Planet Hunters: the Search for Extraterrestrial Life, 2016 (book), Reak- tion Books Lef`evre, C., Pagani, L., Min, M., Poteet, C., and Whittet, D., On the importance of scattering at 8 µm: Brighter than you think, 2016, A&A, 585, L4 Min, M., Rab, C., Woitke, P., Dominik, C., and M´enard, F., Multiwavelength optical prop- erties of compact dust aggregates in protoplanetary disks, 2016, A&A, 585, A13 Babak, S., Petiteau, A., Sesana, A., Brem, P., Rosado, P. A., Taylor, S. R., Lassus, A., Hes- sels, J. W. T., Bassa, C. G., Burgay, M., and 26 colleagues, European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries, 2016, MNRAS, 455, 1665 Sclocco, A., van Leeuwen, J., Bal, H. E., and van Nieuwpoort, R. V., Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators, 2016, A&C, 14, 1 Tramper, F., Sana, H., Fitzsimons, N. E., de Koter, A., Kaper, L., Mahy, L., and Moffat, A., The mass of the very massive binary WR21a, 2016, MNRAS, 455, 1275 Pinilla, P., Klarmann, L., Birnstiel, T., Benisty, M., Dominik, C., and Dullemond, C. P., A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap, 2016, A&A, 585, A35 van den Heuvel, E., Neutron Stars, 2016, ASCO Conference, 20 Van Den Eijnden, J., Ingram, A., and Uttley, P., The energy dependence of quasi periodic oscillations in GRS 1915+105, 2016, AAS, 227, 411.07 Calzetti, D., Johnson, K.
    [Show full text]
  • Dr. S. (Selma) E. De Mink Macgillavry Assistant Professor & Marie Curie Fellow, University of Amsterdam, the Netherlands [email protected]
    CURRICULUM VITAE Dr. S. (Selma) E. de Mink MacGillavry Assistant Professor & Marie Curie Fellow, University of Amsterdam, The Netherlands [email protected] http://www.selmademink.com RESEARCH POSITIONS 2014 – now MacGillavry Assistant Professor & ERC grantee (starting 2017), Univ. of Amsterdam, NL 2015 – 2017 Marie Curie Reintegration Fellow Univ. of Amsterdam, NL 2013 – 2014 Einstein & Princeton Lyman Spitzer Fellow (Two combined prize fellowships, 100% indep. research) Carnegie Observatories & California Institute for Technology, Pasadena, CA, USA 2010 – 2013 Hubble postdoctoral Fellow (NASA prize fellowship, 100% indep. research) Space Telescope Science Institute, Baltimore, MD, USA 2010 Argelander Postdoctoral Fellow Institute for Astronomy, University of Bonn, Germany VISTING RESEARCH POSITIONS 2016 Short term visitor, Kavli Institute for Theoretical Physics, Santa Barbara, CA, USA 2015 Short term visitor, Center for Astrophysics, Harvard University, Cambridge, MA, USA 2013 – 2014 Visiting Associate, California Institute for Technology (Caltech), Pasadena, CA, USA 2000 – 2013 Visiting Associate, Johns Hopkins University, Pasadena, MD, USA EDUCATION 2006-2010 PhD, Astrophysics, Utrecht University, NL, Awarded April 12, 2010 Cum Laude Thesis: Stellar evolution at low metallicity”, Supervisor: Dr. O.R. Pols 2003-2005 MSc, Astrophysics, Utrecht University, NL, Awarded Oct. 24 2005 Cum Laude 2000-2004 BSc, Mathematics, Utrecht University, NL, Awarded Oct. 31 2005 Cum Laude 2000-2003 BSc, Physics, Utrecht University, NL, Awarded Oct. 24 2005 Cum Laude SELECTED AWARDS, HONORS, PRIZES 2016 ERC starting grant, European Research Council 1,900 k€ 2016 Nomination New Scientist Science Talent 2016, Dutch and Flemish Universities 2015 Top grant, Netherlands Science Foundation (NWO) 220 k€ 2015 Marie Curie Fellowship, European Council 166 k€ 2014 MacGillavry Fellowship, Amsterdam Univ.
    [Show full text]
  • THE IMPACT of BINARIES on STELLAR EVOLUTION 03 – 07 July 2017 | ESO HQ, Garching, Germany
    An ESO Workshop on THE IMPACT OF BINARIES ON STELLAR EVOLUTION 03 – 07 July 2017 | ESO HQ, Garching, Germany Image: PN Fleming 1 Main topics: Binary statistics / problems in stellar evolution / stellar mergers / N-body systems / resolved and unresolved populations / chemical evolution / nucleosynthesis / GAIA / gravitational waves Contact: [email protected] submission deadline: 31 March 2017 http://www.eso.org/sci/meetings/2017/Imbase2017.html Registration deadline: 02 June 2017 SOC: • Giacomo Beccari (co-Chair, ESO, Germany) • Monika Petr-Gotzens (ESO, Germany) • Henri Boffin (Chair, ESO, Germany) • Antonio Sollima (Bologna, Italy) • Romano Corradi (GTC, Spain) • Christopher Tout (Cambridge, UK) • Selma de Mink (Amsterdam, the Netherlands) • Sophie Van Eck (Brussels, Belgium) Programme Invited speakers are indicated in bold. Invited talks are 25 min (+10 min for Q&A) and contributed talks are 15+5 min. MONDAY 3 July 2017 08:30 REGISTRATION 09:15 H.M.J. Boffin Welcome and introduction to the conference 09:50 M. Moe Statistics of Binary / Multiple Stars 10:25 J. Winters The nearby M dwarfs and their dance partners 10:45 COFFEE 11:15 C. Clarke Multiplicity at birth and how this impacts star formation 11:50 C. Ackerl Multiplicity among 3500 Young Stellar Objects in Orion A 12:10 P. Kroupa The impact of binary systems on the determination of the stellar IMF 12:45 LUNCH 14:15 M. Salaris Low- and intermediate-mass star evolution: open problems 14:50 P. Beck Oscillation double-lined binaries as test cases for understanding stellar evolution 15:10 X. Chen Formation of low-mass helium white dwarf binaries and constraints to binary and stellar evolution 15:30 A.
    [Show full text]
  • Formation and Evolution of Massive Stars: Current Surveys
    Formation and Evolution of Massive Stars: Current Surveys Alex de Koter University of Amsterdam & KU Leuven Importance of MOS studies Large sample size statistical tests Homogeneous data set & simple selection criteria homogeneous analysis control of biases Potential for serendipitous discoveries Brings together different fields of astrophysics Take away Probably all massive stars are formed as multiples… … most of them have orbits so close that interaction will occur at some point during evolution… … leading to a merger of the two stars for a sizable fraction of the systems VLT-FLAMES Tarantula Survey PI: C. Evans (Evans et al. 2011) 185 x 146 pc VLT-FLAMES Tarantula Survey PI: C. Evans (Evans et al. 2011) • Multi-epoch spectroscopy of over 800 massive stars in 30 Doradus • FLAMES: 132 MEDUSA fibers feed the Giraffe spectrometer • No colour cut • V < 17 mag • 15” (4 pc) exclusion radius in core for fibers • 6 to 8 epochs • 22,000 spectra 10’ = 145 pc VLT-FLAMES Tarantula Survey PI: C. Evans (Evans et al. 2011) One of largest concentrations of massive stars in Local Group Bright H II regions with rich set of populations Closest unobscured view of young starsburst Template to understand distant star-forming galaxies Scientific goals: Role of stellar spin, mass loss, overshooting & multiplicity in evolution Census of the nearest young starburst Starformation history of the region Dynamics of the region Most massive binary (R144, Minit total ~ 400 M) Most massive star outside of dense cluster core (VFTS 682, Minit ~ 200 M) Most massive star (R136a1, Minit ~ 320 M) VFTS 682 Fastest spinning massive star (VFTS 102, vrot ~ 600 km/s) Most massive over-contact binary (VFTS 352, 27+27 M) VLT-FLAMES Tarantula Survey PI: C.
    [Show full text]
  • Arxiv:1912.06853V1 [Astro-Ph.SR] 14 Dec 2019
    Astronomy & Astrophysics manuscript no. TMBM_photometry_le c ESO 2019 December 17, 2019 The Tarantula Massive Binary Monitoring. IV. Double-lined photometric binaries L. Mahy1, L. A. Almeida2; 3, H. Sana1, J. S. Clark4, A. de Koter5; 1, S. E. de Mink6; 5, C. J. Evans7, N. J. Grin8, N. Langer8, A. F. J. Moffat9, F. R. N. Schneider10; 11, T. Shenar1, and F. Tramper12 1 Instituut voor Sterrenkunde, KU Leuven, Celestijnlaan 200D, Bus 2401, B-3001 Leuven, Belgium e-mail: [email protected] 2 Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil 3 Departamento de Física, Universidade Federal do Rio Grande do Norte, UFRN, CP 1641, Natal, RN, 59072-970, Brazil 4 School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 5 Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH Amsterdam, The Netherlands 6 Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA 7 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, United Kingdom 8 Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 9 Département de physique, Université de Montréal, and Centre de Recherche en Astrophysique de Québec, CP 6128, Succ. C-V, Montréal, QC, H3C 3J7, Canada 10 Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, 69120 Heidelberg, Germany 11 Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 12 IAASARS, National Observatory of Athens, 15326 Penteli, Greece Received ...; accepted ... ABSTRACT Context. A high fraction of massive stars are found to be binaries but only a few of them are reported as photometrically variable.
    [Show full text]