THE IMPACT of BINARIES on STELLAR EVOLUTION 03 – 07 July 2017 | ESO HQ, Garching, Germany
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Limits from the Hubble Space Telescope on a Point Source in SN 1987A
Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. -
Neutron Stars
Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. -
Constraints on Common Envelope Magnetic Fields from Observations Of
MNRAS 439, 2014–2024 (2014) doi:10.1093/mnras/stu079 Advance Access publication 2014 February 10 Constraints on common envelope magnetic fields from observations of jets in planetary nebulae James Tocknell,1,2‹ OrsolaDeMarco1,2 and Mark Wardle1,2 1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia 2Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia Accepted 2014 January 13. Received 2014 January 13; in original form 2013 August 22 ABSTRACT The common envelope (CE) interaction describes the swallowing of a nearby companion by Downloaded from a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems http://mnras.oxfordjournals.org/ studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 yr after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. -
Astronomy Astrophysics
A&A 477, 193–202 (2008) Astronomy DOI: 10.1051/0004-6361:20066086 & c ESO 2007 Astrophysics Extended shells around B[e] stars Implications for B[e] star evolution A. P. Marston1 and B. McCollum2 1 ESA/ESAC, Villafranca del Castillo, 28080 Madrid, Spain e-mail: [email protected] 2 Spitzer Science Center, IPAC, Caltech, Pasadena, CA 91125, USA e-mail: [email protected] Received 21 July 2006 / Accepted 15 October 2007 ABSTRACT Aims. The position of B[e] stars in the upper left part of the Hertzsprung-Russell diagram creates a quandary. Are these stars young stars evolving onto the main sequence or old stars that are evolving off of it? Spectral characteristics suggest that B[e] stars can be placed into five subclasses and are not a homogeneous set. Such sub-classification is believed to coincide with varying origins and different evolutions. However, the evolutionary connection of B[e] stars – and notably sgB[e] – to other stars is unclear, particularly to evolved massive stars. We attempt to provide insight into the evolutionary past of B[e] stars. Methods. We performed an Hα narrow-band CCD imaging survey of B[e] stars, in the northern hemisphere. Prior to the current work, no emission-line survey of B[e] stars had yet been made, while only two B[e] stars appeared to have a shell nebula as seen in the Digital Sky Survey. Of nebulae around B[e] stars, only the ring nebula around MWC 137 has been previously observed extensively. Results. In this presentation we report the findings from our narrow-band optical imaging survey of the environments of 25 B[e] stars. -
Asteroseismology with ET
Asteroseismology with ET Erich Gaertig & Kostas D. Kokkotas Theoretical Astrophysics - University of Tübingen nice, et-wp4 meeting,september 1st-2nd, 2010 Asteroseismology with gravitational waves as a tool to probe the inner structure of NS • neutron stars build from single-fluid, normal matter Andersson, Kokkotas (1996, 1998) Benhar, Berti, Ferrari(1999) Benhar, Ferrari, Gualtieri(2004) Asteroseismology with gravitational waves as a tool to probe the inner structure of NS • neutron stars build from single-fluid, normal matter • strange stars composed of deconfined quarks NONRADIAL OSCILLATIONS OF QUARK STARS PHYSICAL REVIEW D 68, 024019 ͑2003͒ NONRADIAL OSCILLATIONS OF QUARK STARS PHYSICAL REVIEW D 68, 024019 ͑2003͒ H. SOTANI AND T. HARADA PHYSICAL REVIEW D 68, 024019 ͑2003͒ FIG. 5. The horizontal axis is the bag constant B (MeV/fmϪ3) Sotani, Harada (2004) FIG. 4. Complex frequencies of the lowest wII mode for each and the vertical axis is the f mode frequency Re(). The squares, stellar model except for the plot for Bϭ471.3 MeV fmϪ3, for circles, and triangles correspond to stellar models whose radiation which the second wII mode is plotted. The labels in this figure radii are fixed at 3.8, 6.0, and 8.2 km, respectively. The dotted line Benhar, Ferrari, Gualtieri, Marassicorrespond (2007) to those of the stellar models in Table I. denotes the new empirical relationship ͑4.3͒ obtained in Sec. IV between Re() of the f mode and B. simple extrapolation to quark stars is not very successful. We want to construct an alternative formula for quark star mod- fixed at Rϱϭ3.8, 6.0, and 8.2 km, and the adopted bag con- els by using our numerical results for f mode QNMs, but we stants are Bϭ42.0 and 75.0 MeV fmϪ3. -
Observations of Gamma-Ray Binaries with VERITAS
Observations of gamma-ray binaries with VERITAS PSR J1023+0038, HESS J0632+057 & LS I +61 303 Gernot Maier for the VERITAS Collaboration Alliance for Astroparticle Physics VERITAS > array of four 12 m Imaging Atmospheric Cherenkov Telescopes located in southern Arizona > energy range: 85 GeV to >30 TeV > field of view of 3.5 > angular resolution ~0.08 > point source sensitivity (5σ detection): 1% Crab in < 25 h (10% in 25 min) Gernot Maier Binary observations with VERITAS May 2015 The VERITAS Binary Program D GeV/TeV type of reference type orbital (kpc) period [d] detection observation (VERITAS) Be+neutron star? regular since 2006 ApJ 2008, 2009, LS I +61 303 1.6 26.5 ✔/✔ BH? (10-30 h/season) 2011, 2013 regular since 2006 HESS J0632+057 B0pe + ?? 1.5 315 ✘/✔ ApJ 2009, 2014 (10-30 h/season) 06.5V+neutron LS 5039 2.5 3.9 ✔/✔ (~10 h/season) - star? BH? Cygnus X-1 O9.7Iab + BH 2.2 5.6 (✘/✔) ToO (X-rays/LAT) - Cygnus X-3 Wolf Rayet + BH? 7 0.2 (✔)/✘ ToO (X-rays/LAT) ApJ 2013 ToO (triggered by 1A0535+262 Be/pulsar binary 2 111 ✘/✘ ApJ 733, 96 (2011) Swift XRT) Nova in a ToO (triggered by V407 Cygni 2.7 ✔/✘ ApJ 754, 77 (2012) symbiotic binary Fermi) Be/X-ray Binary Be-XRB - - - filler program - discover program BAT flaring hard SGRs+XRBs - - - ToO - X-ray objects Millisecond pulsar regular MSPB - - - - binaries (10-15 h/season) ToO Magnetars SGRs+AXPs - - - Proc of ICRC 2009 (GRB pipeline) Gernot Maier Binary observations with VERITAS May 2015 PSR J1023+0038: A new type of gamma-ray binary? PSR J1023+0038: 1.69 ms spin period, 4.8 hr orbital -
Stability of Planets in Binary Star Systems
StabilityStability ofof PlanetsPlanets inin BinaryBinary StarStar SystemsSystems Ákos Bazsó in collaboration with: E. Pilat-Lohinger, D. Bancelin, B. Funk ADG Group Outline Exoplanets in multiple star systems Secular perturbation theory Application: tight binary systems Summary + Outlook About NFN sub-project SP8 “Binary Star Systems and Habitability” Stand-alone project “Exoplanets: Architecture, Evolution and Habitability” Basic dynamical types S-type motion (“satellite”) around one star P-type motion (“planetary”) around both stars Image: R. Schwarz Exoplanets in multiple star systems Observations: (Schwarz 2014, Binary Catalogue) ● 55 binary star systems with 81 planets ● 43 S-type + 12 P-type systems ● 10 multiple star systems with 10 planets Example: γ Cep (Hatzes et al. 2003) ● RV measurements since 1981 ● Indication for a “planet” (Campbell et al. 1988) ● Binary period ~57 yrs, planet period ~2.5 yrs Multiplicity of stars ~45% of solar like stars (F6 – K3) with d < 25 pc in multiple star systems (Raghavan et al. 2010) Known exoplanet host stars: single double triple+ source 77% 20% 3% Raghavan et al. (2006) 83% 15% 2% Mugrauer & Neuhäuser (2009) 88% 10% 2% Roell et al. (2012) Exoplanet catalogues The Extrasolar Planets Encyclopaedia http://exoplanet.eu Exoplanet Orbit Database http://exoplanets.org Open Exoplanet Catalogue http://www.openexoplanetcatalogue.com The Planetary Habitability Laboratory http://phl.upr.edu/home NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Habitable Zone Gallery http://www.hzgallery.org Binary Catalogue Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Dynamical stability Stability limit for S-type planets Rabl & Dvorak (1988), Holman & Wiegert (1999), Pilat-Lohinger & Dvorak (2002) Parameters (a , e , μ) bin bin Outer limit at roughly max. -
On the Origin of Stellar Associations the Impact of Gaia DR2
BAAA, Vol. 61C, 2020 Asociaci´on Argentina de Astronom´ıa J. Forero-Romero, E. Jimenez Bailon & P.B. Tissera, eds. Proceedings of the XVI LARIM On the origin of stellar associations The impact of Gaia DR2 G. Carraro1 1 Dipartimento di Fisica e Astronomia Galileo Galilei, Padova, Italy Contact / [email protected] Abstract / In this review I discuss different theories of the formation of OB associations in the Milky Way, and provide the observational evidences in support of them. In fact, the second release of Gaia astrometric data (April 2018) is revolutionising the field, because it allows us to unravel the 3D structure and kinematics of stellar associations with unprecedented details by providing precise distances and a solid membership assessment. As an illustration, I summarise some recent studies on three OB associations: Cygnus OB2, Vela OB2, and Scorpius OB1, focussing in more detail to Sco OB1. A multi-wavelength study, in tandem with astrometric and kinematic data from Gaia DR2, seems to lend support, at least in this case, to a scenario in which star formation is not monolithic. As a matter of fact, besides one conspicuous star cluster, NGC 6231, and the very sparse star cluster Trumpler 24, there are several smaller groups of young OB and pre-main sequence stars across the association, indicating that star formation is highly structured and with no preferred scale. A new revolution is expected with the incoming much awaited third release of Gaia data. Keywords / open clusters and associations: general | stars: formation 1. Introduction made of 50 stars or more. They are formed then in the upper part of the molecular cloud mass distribu- Stellar associations (a term introduced by Ambartsum- tion. -
Cygnus OB2 – a Young Globular Cluster in the Milky Way Jürgen Knödlseder
Cygnus OB2 – a young globular cluster in the Milky Way Jürgen Knödlseder To cite this version: Jürgen Knödlseder. Cygnus OB2 – a young globular cluster in the Milky Way. Astronomy and Astrophysics - A&A, EDP Sciences, 2000, 360, pp.539 - 548. hal-01381935 HAL Id: hal-01381935 https://hal.archives-ouvertes.fr/hal-01381935 Submitted on 14 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astron. Astrophys. 360, 539–548 (2000) ASTRONOMY AND ASTROPHYSICS Cygnus OB2–ayoung globular cluster in the Milky Way J. Knodlseder¨ INTEGRAL Science Data Centre, Chemin d’Ecogia 16, 1290 Versoix, Switzerland Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, B.P. 4346, 31028 Toulouse Cedex 4, France ([email protected]) Received 31 May 2000 / Accepted 23 June 2000 Abstract. The morphology and stellar content of the Cygnus particularly good region to address such questions, since it is OB2 association has been determined using 2MASS infrared extremely rich (e.g. Reddish et al. 1966, hereafter RLP), and observations in the J, H, and K bands. The analysis reveals contains some of the most luminous stars known in our Galaxy a spherically symmetric association of ∼ 2◦ in diameter with (e.g. -
Highlights of Discoveries for $\Delta $ Scuti Variable Stars from the Kepler
Highlights of Discoveries for δ Scuti Variable Stars from the Kepler Era Joyce Ann Guzik1,∗ 1Los Alamos National Laboratory, Los Alamos, NM 87545 USA Correspondence*: Joyce Ann Guzik [email protected] ABSTRACT The NASA Kepler and follow-on K2 mission (2009-2018) left a legacy of data and discoveries, finding thousands of exoplanets, and also obtaining high-precision long time-series data for hundreds of thousands of stars, including many types of pulsating variables. Here we highlight a few of the ongoing discoveries from Kepler data on δ Scuti pulsating variables, which are core hydrogen-burning stars of about twice the mass of the Sun. We discuss many unsolved problems surrounding the properties of the variability in these stars, and the progress enabled by Kepler data in using pulsations to infer their interior structure, a field of research known as asteroseismology. Keywords: Stars: δ Scuti, Stars: γ Doradus, NASA Kepler Mission, asteroseismology, stellar pulsation 1 INTRODUCTION The long time-series, high-cadence, high-precision photometric observations of the NASA Kepler (2009- 2013) [Borucki et al., 2010; Gilliland et al., 2010; Koch et al., 2010] and follow-on K2 (2014-2018) [Howell et al., 2014] missions have revolutionized the study of stellar variability. The amount and quality of data provided by Kepler is nearly overwhelming, and will motivate follow-on observations and generate new discoveries for decades to come. Here we review some highlights of discoveries for δ Scuti (abbreviated as δ Sct) variable stars from the Kepler mission. The δ Sct variables are pre-main-sequence, main-sequence (core hydrogen-burning), or post-main-sequence (undergoing core contraction after core hydrogen burning, and beginning shell hydrogen burning) stars with spectral types A through mid-F, and masses around 2 solar masses. -
Communications in Asteroseismology
Communications in Asteroseismology Volume 141 January, 2002 Editor: Michel Breger, TurkÄ enschanzstra¼e 17, A - 1180 Wien, Austria Layout and Production: Wolfgang Zima and Renate Zechner Editorial Board: Gerald Handler, Don Kurtz, Jaymie Matthews, Ennio Poretti http://www.deltascuti.net COVER ILLUSTRATION: Representation of the COROT Satellite, which is primarily devoted to under- standing the physical processes that determine the internal structure of stars, and to building an empirically tested and calibrated theory of stellar evolution. Another scienti¯c goal is to observe extrasolar planets. British Library Cataloguing in Publication data. A Catalogue record for this book is available from the British Library. All rights reserved ISBN 3-7001-3002-3 ISSN 1021-2043 Copyright °c 2002 by Austrian Academy of Sciences Vienna Contents Multiple frequencies of θ2 Tau: Comparison of ground-based and space measurements by M. Breger 4 PMS stars as COROT additional targets by M. Marconi, F. Palla and V. Ripepi 13 The study of pulsating stars from the COROT exoplanet ¯eld data by C. Aerts 20 10 Aql, a new target for COROT by L. Bigot and W. W. Weiss 26 Status of the COROT ground-based photometric activities by R. Garrido, P. Amado, A. Moya, V. Costa, A. Rolland, I. Olivares and M. J. Goupil 42 Mode identi¯cation using the exoplanetary camera by R. Garrido, A. Moya, M. J.Goupil, C. Barban, C. van't Veer-Menneret, F. Kupka and U. Heiter 48 COROT and the late stages of stellar evolution by T. Lebzelter, H. Pikall and F. Kerschbaum 51 Pulsations of Luminous Blue Variables by E. -