Cellular Boundary Formula Let Be a Complex with Cells N in Each Dimension

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Boundary Formula Let Be a Complex with Cells N in Each Dimension ALGEBRAIC TOPOLOGY NOTES WEEK 2 Cellular Boundary Formula Let be a complex with cells n in each dimension . Recall that if is a X CW feαgα n X CW complex we can build a cellular chain complex (C∗; d∗) where C∗ = Hn(Xn;Xn−1) = # of n cells To describe the cellular boundary map it suces to say what it does to the Z : dn generators of the chain group Cn: To do this, we choose the natural basis for Cn which assigns to each n a generator of and to each n−1 a generator of It follows from linearity eα Cn eβ Cn−1: that n P n−1 for some integers Our rst theorem will give a convenient dn(eα) = β dαβeβ dαβ: representation to the coecients dαβ: Theorem. The coecients in n P n−1 may be computed as the degree of dαβ dn(eα) = β dαβeβ 'n the map n−1 α n−1 given by attaching the cell n to via the attaching Sα / Xn−1 / Sβ eα Xn−1 map n from the CW structure on and then collapsing ` n−1 to a point. 'α X Xn−2 γ6=β eγ Proof. We will proceed with the proof by chasing the following diagram, where the map ∆αβ∗ is dened so that the top right square commutes. ∆ n n−1 @ n−1 αβ∗ n−1 Hn(Dα;Sα ) ' / Hn(Sα ) / Hn−1(Sβ ) O n n−1 q Φ∗ 'α∗ β∗ @n q∗ ~ ~ n−1 n−1 Cn(X) / Hn−1(Xn−1) / Hn−1(Xn−1=Xn−2) = ⊕βHn−1(eβ =@eβ ) OO OO d OOO n n−1 OO j∗ ' OOO OO' ' Xn−1 Xn−2 C (X) / Hn( ; ) n−1 Xn−2 Xn−2 Recall that our goal is to compute n . The upper left square is natural and therefore dn(eα) ∗ ∗−1 commutes (it is induced by the map Φ:(D ;S ) ! (X∗;X∗−1), see Hatcher p.127), while the lower left triangle is part of the exact diagram dening the chain complex C∗(X) and is dened to commute as well. Appealing to naturality, the map gives a unique n so that Φ Dα n n n. Since the top left square and the bottom left triangle both commute, this Φ (Dα) = eα gives that n n−1 n n . dn(eα) = j∗ ◦ 'α∗ ◦ @(Dα) Looking to the bottom right square, recall that since X is a CW complex, (Xn;Xn−1) is a ~ good pair. This gives the isomorphism Cn−1(X) = Hn−1(Xn−1;Xn−2) ' Hn−1(Xn−1=Xn−2) ~ But, we similarly have Hn−1(Xn−1=Xn−2) ' Hn−1(Xn−1=Xn−2;Xn−2=Xn−2), where the iso- morphism is induced by the quotient map q collapsing Xn−2 (Hatcher 2.22 p.124). The bottom right square commutes by the denition of n−1 and from which it follows j∗ q∗ that α = n−1 α where formally we should precompose with the isomorphism be- dn(en) q∗'α∗ @Dn ~ tween Cn−1(X) and Hn−1(Xn−1=Xn−2) in the left hand side so that everything is in the same space. This last map takes the generator α to some linear combination of gener- Dn ators in ~ n−1 n−1 . To see which generators it maps to, we project down to ⊕βHn−1(eβ =@eβ ) 1 ALGEBRAIC TOPOLOGY NOTES WEEK 2 2 the summands to obtain α = P n−1 α. As noted before, we have dened β dn(en) β qβ∗q∗'α∗ @Dn n−1. Writing α = P β, we can see from the denition of the ∆αβ∗ = qβ∗q∗'α∗ dn(en) β ∆αβ∗@Dn above maps that is multiplication by . ∆αβ∗ dαβ Computing Cellular Homology Example. Mg (the orientable surface of genus g) We rst claim that we can construct a CW structure on Mg as follows: 2g 0 a 1 a 2 1 2 Mg = fD g fDαg fD g=['α;' ] α=1 where we denote by 1 2 the relations n for n and where the maps 1 are ['α;' ] 'α(x) ∼ x x 2 @Dα 'α the collapsing maps and the map 2 takes the generator of 2 to the word −1 −1 −1 −1 ' D a1b1a1 b1 :::agbgag bg 1 if we write ag and bg as the generators associated to the 2g copies of D : We can justify that this denition agrees with the geometric denition of Mg by writing Mg as the g−fold con- nected sum of the torus T 2 and considering the fundamental polygon of T 2: As an example of this construction in the case g = 2 we can consider two tori as below, where we remove the two red circles and identify their boundaries: Topologically, once we glue the tori together along the identied circles, this gives the double torus (M2) seen below: We can realize this construction at the level of the fundmanetal polygons (which will give rise more naturally to the cell structure above) by considering the fundamental polygon of the torus: ALGEBRAIC TOPOLOGY NOTES WEEK 2 3 The above polygon has a natural CW structure which is exactly what we described above (the polygon above can be viewed as a single vertex identied as the boundary of each of the four edges attached to a two cell in the center where the attaching map is consistent with the identications of the edges). Taking two copies of this fundamental polygon (one for AB and one for CD), we can remove a disk from each and identify the boundary circles E to construct the connected sum. If we cut along a diagonal (the picture below corresponds to cutting the AB square from the bottom left vertex to E and the CD square from the top right vertex to E then gluing them) we can glue two of these squares together to obtain a space topologically equivalent to the above construction. Notice that we may delete all of E except its endpoints in this new picture since it is topologically the same as the area around it. We now compute the cellular chain group C∗(Mg): Since Ck(Mg) ' Hn(Xn;Xn−1) where Xn is the n−skeleton of Mg we have d3 d2 d1 d0 0 / Z / Z2g / Z / 0 ALGEBRAIC TOPOLOGY NOTES WEEK 2 4 We demonstrated in the last class that d1 is the zero map because there is only one one- 2 cell. There is only one two-cell as well, so we only need to nd d2(e ) which we compute via the cellular boundary formula above. Recall from the beginning of this example that the attaching map sends the generator to −1 −1 −1 −1. Consider the summand a1b1a1 b1 :::agbgag bg dea1 in P 1 . When we collapse all the other cells to a point, the word dening the attaching β deβeβ map −1 −1 −1 −1 reduces to −1 . We can see this geometrically in the case a1b1a1 b1 :::agbgag bg a1a1 = 0 g = 2 in the above picture by collapsing all the cells except A to a point, at which point the map is given by 2 By symmetry then it follows that d2(e ) is the zero map. It then follows that the homology groups of Mg are given by 8 i=0,2 <>Z 2g i=1 Hn(Mg) = Z :>0 otherwise Example. Ng (the nonorientable surface of genus g) Formally, 2 2. We construct this directly as above via the labelling scheme Ng = RP #:::#RP which sends a generator to 2 2 which coincides in dimension two ( ) with 2. a1:::ag g = 1 RP The short exact sequence for the cellular chains is now given by d3 d2 d1 d0 0 / Z / Zg / Z / 0 where as before d1 = 0 because there is only one cell in dimension one. Now to compute 2 d2(e ) we again apply the cellular boundary formula. The same collapsing happens in the quo- tient space except now for each since we attach along the map Q 2. It follows then deai = 2 i i ai that . We now choose a basis for g given by d2(e) = (2; :::; 2) Z (1; 0; :::; 0); :::; (0; :::; 0; 1; 0); (1; :::; 1) (that is the standard basis with the last basis vector replaced with (1; :::; 1)). We can then compute directly that 8 i=0 <>Z g−1 i=1 Hn(Ng) = Z ⊕ Z2 :>0 otherwise n Example. RP n We showed in the last notes that we can construct RP as the quotient space of Sn where n we identify antipodal points. RP = Sn= ∼ has one cell in each dimension 0; 1; :::; n where we consider the CW structure of Sn with two cells in each dimension. The attaching map of n k−1 ek in RP is the two-fold cover Sk−1 ! RP . We now consider the long exact sequence for the chain groups dn+1 dn d1 d0 0 / Z / :::Z / Z / 0 ALGEBRAIC TOPOLOGY NOTES WEEK 2 5 Since is a map from k−1 k−1 k−1 k−2 we can compute its degree dk dk : S ! S = RP =RP k−1 k−2 directly by considering any y 2 RP nRP for which we know that (letting ' be the attaching map) '−1(y) = fy; a ◦ yg where a is the antipodal map. This is the usual two-fold cover of Sk−1 and so is a local homeomorphism. We consider a neighborhood V of y and the two neighborhoods U1 and U2 given to exist by the local homeomorphism property.
Recommended publications
  • Products in Homology and Cohomology Via Acyclic Models
    EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY CHRIS KOTTKE 1. The Eilenberg-Zilber Theorem 1.1. Tensor products of chain complexes. Let C∗ and D∗ be chain complexes. We define the tensor product complex by taking the chain space M M C∗ ⊗ D∗ = (C∗ ⊗ D∗)n ; (C∗ ⊗ D∗)n = Cp ⊗ Dq n2Z p+q=n with differential defined on generators by p @⊗(a ⊗ b) := @a ⊗ b + (−1) a ⊗ @b; a 2 Cp; b 2 Dq (1) and extended to all of C∗ ⊗ D∗ by bilinearity. Note that the sign convention (or 2 something similar to it) is required in order for @⊗ ≡ 0 to hold, i.e. in order for C∗ ⊗ D∗ to be a complex. Recall that if X and Y are CW-complexes, then X × Y has a natural CW- complex structure, with cells given by the products of cells on X and cells on Y: As an exercise in cellular homology computations, you may wish to verify for yourself that CW CW ∼ CW C∗ (X) ⊗ C∗ (Y ) = C∗ (X × Y ): This involves checking that the cellular boundary map satisfies an equation like (1) on products a × b of cellular chains. We would like something similar for general spaces, using singular chains. Of course, the product ∆p × ∆q of simplices is not a p + q simplex, though it can be subdivided into such simplices. There are two ways to do this: one way is direct, involving the combinatorics of so-called \shuffle maps," and is somewhat tedious. The other method goes by the name of \acyclic models" and is a very slick (though nonconstructive) way of producing chain maps between C∗(X) ⊗ C∗(Y ) 1 and C∗(X × Y ); and is the method we shall follow, following [Bre97].
    [Show full text]
  • K-THEORY of FUNCTION RINGS Theorem 7.3. If X Is A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 69 (1990) 33-50 33 North-Holland K-THEORY OF FUNCTION RINGS Thomas FISCHER Johannes Gutenberg-Universitit Mainz, Saarstrage 21, D-6500 Mainz, FRG Communicated by C.A. Weibel Received 15 December 1987 Revised 9 November 1989 The ring R of continuous functions on a compact topological space X with values in IR or 0Z is considered. It is shown that the algebraic K-theory of such rings with coefficients in iZ/kH, k any positive integer, agrees with the topological K-theory of the underlying space X with the same coefficient rings. The proof is based on the result that the map from R6 (R with discrete topology) to R (R with compact-open topology) induces a natural isomorphism between the homologies with coefficients in Z/kh of the classifying spaces of the respective infinite general linear groups. Some remarks on the situation with X not compact are added. 0. Introduction For a topological space X, let C(X, C) be the ring of continuous complex valued functions on X, C(X, IR) the ring of continuous real valued functions on X. KU*(X) is the topological complex K-theory of X, KO*(X) the topological real K-theory of X. The main goal of this paper is the following result: Theorem 7.3. If X is a compact space, k any positive integer, then there are natural isomorphisms: K,(C(X, C), Z/kZ) = KU-‘(X, Z’/kZ), K;(C(X, lR), Z/kZ) = KO -‘(X, UkZ) for all i 2 0.
    [Show full text]
  • Homology of Cellular Structures Allowing Multi-Incidence Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier
    Homology of Cellular Structures Allowing Multi-incidence Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier To cite this version: Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier. Homology of Cellular Structures Allowing Multi-incidence. Discrete and Computational Geometry, Springer Verlag, 2015, 54 (1), pp.42-77. 10.1007/s00454-015-9662-5. hal-01189215 HAL Id: hal-01189215 https://hal.archives-ouvertes.fr/hal-01189215 Submitted on 15 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Homology of Cellular Structures allowing Multi-Incidence S. Alayrangues · G. Damiand · P. Lienhardt · S. Peltier Abstract This paper focuses on homology computation over "cellular" structures whose cells are not necessarily homeomorphic to balls and which allow multi- incidence between cells. We deal here with combinatorial maps, more precisely chains of maps and subclasses as generalized maps and maps. Homology computa- tion on such structures is usually achieved by computing simplicial homology on a simplicial analog. But such an approach is computationally expensive as it requires to compute this simplicial analog and to perform the homology computation on a structure containing many more cells (simplices) than the initial one.
    [Show full text]
  • 0.1 Euler Characteristic
    0.1 Euler Characteristic Definition 0.1.1. Let X be a finite CW complex of dimension n and denote by ci the number of i-cells of X. The Euler characteristic of X is defined as: n X i χ(X) = (−1) · ci: (0.1.1) i=0 It is natural to question whether or not the Euler characteristic depends on the cell structure chosen for the space X. As we will see below, this is not the case. For this, it suffices to show that the Euler characteristic depends only on the cellular homology of the space X. Indeed, cellular homology is isomorphic to singular homology, and the latter is independent of the cell structure on X. Recall that if G is a finitely generated abelian group, then G decomposes into a free part and a torsion part, i.e., r G ' Z × Zn1 × · · · Znk : The integer r := rk(G) is the rank of G. The rank is additive in short exact sequences of finitely generated abelian groups. Theorem 0.1.2. The Euler characteristic can be computed as: n X i χ(X) = (−1) · bi(X) (0.1.2) i=0 with bi(X) := rk Hi(X) the i-th Betti number of X. In particular, χ(X) is independent of the chosen cell structure on X. Proof. We use the following notation: Bi = Image(di+1), Zi = ker(di), and Hi = Zi=Bi. Consider a (finite) chain complex of finitely generated abelian groups and the short exact sequences defining homology: dn+1 dn d2 d1 d0 0 / Cn / ::: / C1 / C0 / 0 ι di 0 / Zi / Ci / / Bi−1 / 0 di+1 q 0 / Bi / Zi / Hi / 0 The additivity of rank yields that ci := rk(Ci) = rk(Zi) + rk(Bi−1) and rk(Zi) = rk(Bi) + rk(Hi): Substitute the second equality into the first, multiply the resulting equality by (−1)i, and Pn i sum over i to get that χ(X) = i=0(−1) · rk(Hi).
    [Show full text]
  • 1 CW Complex, Cellular Homology/Cohomology
    Our goal is to develop a method to compute cohomology algebra and rational homotopy group of fiber bundles. 1 CW complex, cellular homology/cohomology Definition 1. (Attaching space with maps) Given topological spaces X; Y , closed subset A ⊂ X, and continuous map f : A ! y. We define X [f Y , X t Y / ∼ n n n−1 n where x ∼ y if x 2 A and f(x) = y. In the case X = D , A = @D = S , D [f X is said to be obtained by attaching to X the cell (Dn; f). n−1 n n Proposition 1. If f; g : S ! X are homotopic, then D [f X and D [g X are homotopic. Proof. Let F : Sn−1 × I ! X be the homotopy between f; g. Then in fact n n n D [f X ∼ (D × I) [F X ∼ D [g X Definition 2. (Cell space, cell complex, cellular map) 1. A cell space is a topological space obtained from a finite set of points by iterating the procedure of attaching cells of arbitrary dimension, with the condition that only finitely many cells of each dimension are attached. 2. If each cell is attached to cells of lower dimension, then the cell space X is called a cell complex. Define the n−skeleton of X to be the subcomplex consisting of cells of dimension less than n, denoted by Xn. 3. A continuous map f between cell complexes X; Y is called cellular if it sends Xk to Yk for all k. Proposition 2. 1. Every cell space is homotopic to a cell complex.
    [Show full text]
  • Local Homology of Abstract Simplicial Complexes
    Local homology of abstract simplicial complexes Michael Robinson Chris Capraro Cliff Joslyn Emilie Purvine Brenda Praggastis Stephen Ranshous Arun Sathanur May 30, 2018 Abstract This survey describes some useful properties of the local homology of abstract simplicial complexes. Although the existing literature on local homology is somewhat dispersed, it is largely dedicated to the study of manifolds, submanifolds, or samplings thereof. While this is a vital per- spective, the focus of this survey is squarely on the local homology of abstract simplicial complexes. Our motivation comes from the needs of the analysis of hypergraphs and graphs. In addition to presenting many classical facts in a unified way, this survey presents a few new results about how local homology generalizes useful tools from graph theory. The survey ends with a statistical comparison of graph invariants with local homology. Contents 1 Introduction 2 2 Historical discussion 4 3 Theoretical groundwork 6 3.1 Representing data with simplicial complexes . .7 3.2 Relative simplicial homology . .8 3.3 Local homology . .9 arXiv:1805.11547v1 [math.AT] 29 May 2018 4 Local homology of graphs 12 4.1 Basic graph definitions . 14 4.2 Local homology at a vertex . 15 5 Local homology of general complexes 18 5.1 Stratification detection . 19 5.2 Neighborhood filtration . 24 6 Computational considerations 25 1 7 Statistical comparison with graph invariants 26 7.1 Graph invariants used in our comparison . 27 7.2 Comparison methodology . 27 7.3 Dataset description . 28 7.4 The Karate graph . 28 7.5 The Erd}os-R´enyi graph . 30 7.6 The Barabasi-Albert graph .
    [Show full text]
  • Algebraic Topology 565 2016
    Algebraic Topology 565 2016 February 21, 2016 The general format of the course is as in Fall quarter. We'll use Hatcher Chapters 3-4, and we'll start using selected part of Milnor's Characteristic classes. One global notation change: From now on we fix a principal ideal domain R, and let H∗X denote H∗(X; R). This change extends in the obvious way to other notations: C∗X means RS·X (singular chains with coefficients in R), tensor products and Tor are over R, cellular homology is with coefficients in R, and so on. Course outline Note: Applications and exercises are still to appear. Some parts of the outline below won't make sense yet, but still serve to give the general idea. 1. Homology of products. There are two steps to compute the homology of a product ∼ X × Y : (i) The Eilenberg-Zilber theorem that gives a chain equivalence C∗X ⊗ C∗Y = C∗(X × Y ), and (ii) the purely algebraic Kunneth theorem that expresses the homology of a tensor product of chain complexes in terms of tensor products and Tor's of the homology of the individual complexes. I plan to only state part (ii) and leave the proof to the text. On the other hand, I'll take a very different approach to (i), not found in Hatcher: the method of acyclic models. This more categorical approach is very slick and yields easy proofs of some technical theorems that are crucial for the cup product in cohomology later. There are explicit formulas for certain choices of the above chain equivalence and its inverse; in particular there is a very simple and handy formula for an inverse, known as the Alexander- Whitney map.
    [Show full text]
  • Homology and Homological Algebra, D. Chan
    HOMOLOGY AND HOMOLOGICAL ALGEBRA, D. CHAN 1. Simplicial complexes Motivating question for algebraic topology: how to tell apart two topological spaces? One possible solution is to find distinguishing features, or invariants. These will be homology groups. How do we build topological spaces and record on computer (that is, finite set of data)? N Definition 1.1. Let a0, . , an ∈ R . The span of a0, . , an is ( n ) X a0 . an := λiai | λi > 0, λ1 + ... + λn = 1 i=0 = convex hull of {a0, . , an}. The points a0, . , an are geometrically independent if a1 − a0, . , an − a0 is a linearly independent set over R. Note that this is independent of the order of a0, . , an. In this case, we say that the simplex Pn a0 . an is n -dimensional, or an n -simplex. Given a point i=1 λiai belonging to an n-simplex, we say it has barycentric coordinates (λ0, . , λn). One can use geometric independence to show that this is well defined. A (proper) face of a simplex σ = a0 . an is a simplex spanned by a (proper) subset of {a0, . , an}. Example 1.2. (1) A 1-simplex, a0a1, is a line segment, a 2-simplex, a0a1a2, is a triangle, a 3-simplex, a0a1a2a3 is a tetrahedron, etc. (2) The points a0, a1, a2 are geometrically independent if they are distinct and not collinear. (3) Midpoint of a0a1 has barycentric coordinates (1/2, 1/2). (4) Let a0 . a3 be a 3-simplex, then the proper faces are the simplexes ai1 ai2 ai3 , ai4 ai5 , ai6 where 0 6 i1, .
    [Show full text]
  • 0.1 Cellular Homology
    0.1 Cellular Homology Let us start with the following preliminary result: Lemma 0.1.1. If X is a CW complex, then: ( 0 if k 6= n (a) Hk(Xn;Xn−1) = Z # n-cells if k = n: (b) Hk(Xn) = 0 if k > n. In particular, if X is finite dimensional, then Hk(X) = 0 if k > dim(X). (c) The inclusion i : Xn ,! X induces an isomorphism Hk(Xn) ! Hk(X) if k < n. n Proof. (a) We know that Xn is obtained from Xn−1 by attaching the n-cells (eλ)λ. Pick a n point xλ at the center of each n-cell eλ. Let A := Xn − fxλgλ. Then A deformation retracts to Xn−1, so we have that ∼ Hk(Xn;Xn−1) = Hk(Xn;A): n n By excising Xn−1, the latter group is isomorphic to ⊕λHk(Dλ;Dλ − fxλg). Moreover, the n n homology long exact sequence of the pair (Dλ;Dλ − fxλg) yields that ( n n ∼ n−1 ∼ Z if k = n Hk(D ;D − fxλg) = Hek−1(S ) = λ λ λ 0 if k 6= n So the claim follows. (b) Consider the following portion of the long exact sequence of the pair for (Xn;Xn−1): ! Hk+1(Xn;Xn−1) ! Hk(Xn−1) ! Hk(Xn) ! Hk(Xn;Xn−1) ! If k +1 6= n and k 6= n, we have from part (a) that Hk+1(Xn;Xn−1) = 0 and Hk(Xn;Xn−1) = ∼ 0. Thus Hk(Xn−1) = Hk(Xn). Hence if k > n (so in particular, n 6= k + 1 and n 6= k), we get by iteration that ∼ ∼ ∼ Hk(Xn) = Hk(Xn−1) = ··· = Hk(X0): Note that X0 is just a collection of points, so Hk(X0) = 0.
    [Show full text]
  • Homological Algebra
    Chapter 29 Homological algebra 29.1 Homology of a chain complex A chain complex C∗ is a sequence of abelian groups and homomor- phisms / / / / C∗ : ··· Cn+1 Cn Cn−1 ··· ∂n+1 ∂n where (i) the elements of Cn are called n-chains, and / (ii) the homomorphisms ∂n : Cn Cn−1 are called boundary homo- morphisms. These are required to satisfy the condition ∂n+1 ◦ ∂n =0 for each integer n. We shall only consider those with Cn =0for n<0. Consequently, ∂n =0for n ≤ 0. The n-cycles are those elements in Cn whose boundaries are zero: / Zn(C):=ker(∂n : Cn Cn−1). In particular, Z0 = C0 On the other hand, the n-boundaries are those elements of Cn which are images of elements of Cn+1 under the boundary homomorphism ∂n+1: 1002 Homological algebra / Bn(C):=Im(∂n+1 : Cn+1 Cn). From the condition ∂n+1 ◦ ∂n =0,wehaveIm ∂n+1 ⊆ ker ∂n for each integer n. The homology of the chain complex C measures its deviation from exactness: for each integer n, Hn(C∗):=Zn(C)/Bn(C)=ker∂n/Im ∂n+1. In particular, Hn(C)=0for n<0. Theorem 29.1. Every short exact sequence of chain complexes gives rise to a long exact sequence in homology: if 0 /C /C /C /0 f g is an exact sequence of chain complexes, then the sequence / / / / / / ··· Hn+1(C ) Hn(C) Hn(C ) Hn(C ) Hn−1(C) ··· dn+1 f∗ g∗ dn is exact. Proposition 29.2. A commutative diagram 0 /C /C /C /0 0 /E /E /E /0 of short exact sequences of chain complexes induces a commutative diagram of exact homology sequences / / / / / / ··· Hn+1(C ) Hn(C) Hn(C ) Hn(C ) Hn−1(C) ··· / / / / / / ··· Hn+1(E ) Hn(E) Hn(E ) Hn(E ) Hn−1(E) ··· 29.2 Cohomology of a chain complex 1003 29.2 Cohomology of a chain complex A cochain complex C∗ is a sequence of abelian groups and homomor- phisms n−1 n C∗ : ··· /Cn−1 δ /Cn δ /Cn+1 /··· where (i) the elements of Cn are called n-cochains, and (ii) the homomorphisms δn : Cn /Cn+1 are called coboundary homo- morphisms.
    [Show full text]
  • Geometry of Compact Complex Manifolds Associated to Generalized Quasi-Fuchsian Representations
    Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations David Dumas and Andrew Sanders 1 Introduction This paper is concerned with the following general question: which aspects of the complex- analytic study of discrete subgroups of PSL2C can be generalized to discrete subgroups of other semisimple complex Lie groups? To make this more precise, we recall the classical situation that motivates our discussion. A torsion-free cocompact Fuchsian group Γ < PSL2R acts freely, properly discontinuously, 2 and cocompactly by isometries on the symmetric space PSL2R=PSO(2) ' H . The quotient 2 S = ΓnH is a closed surface of genus g > 2. When considering Γ as a subgroup of 3 PSL2C, it is natural to consider either its isometric action on the symmetric space H ' PSL =PSU(2) or its holomorphic action on the visual boundary 1 ' PSL =B . 2C PC 2C PSL2C The latter action has a limit set Λ = 1 and a disconnected domain of discontinuity PR Ω = H t H. The quotient ΓnΩ is a compact K¨ahler manifold|more concretely, it is the union of two complex conjugate Riemann surfaces. Quasiconformal deformations of such groups Γ give quasi-Fuchsian groups in PSL2C. Each such group acts on 1 in topological conjugacy with a Fuchsian group, hence the limit PC set Λ is a Jordan curve, the domain of discontinuity has two contractible components, and the quotient manifold is a union of two Riemann surfaces (which are not necessarily complex conjugates of one another). If G is a complex simple Lie group of adjoint type (such as PSLnC, n > 2), there is a distinguished homomorphism ιG : PSL2C ! G introduced by Kostant [Kos59] and called the principal three-dimensional embedding.
    [Show full text]
  • Algebraic Topology
    algebraic topology Lectures delivered by Michael Hopkins Notes by Akhil Mathew Fall 2010, Harvard Last updated 11/29/2010 Contents Lecture 1 9/1 Lecture 2 9/3 x1 A basic construction 7 x2 Definition 8 x3 Simplicial complexes 9 x4 ∆-complex 10 Lecture 3 9/8 x1 Chain complexes from ∆-complexes 12 Lecture 4 9-10 Lecture 5 9/13 x1 Completion of the proof of homotopy invariance 17 x2 Excision 18 Lecture 6 [Section] 9/13 x1 A discussion of naturality 20 Lecture 7 9/15 x1 Excision 22 x2 Some algebra 24 Lecture 8 9/17 Lecture 9 9/20 x1 Some algebra 29 x2 Relative homology 31 x3 A substantial theorem 32 Lecture 10 9/22 x1 Finishing up last week 35 x2 Triples 36 x3 Another variant; homology of the sphere 36 x4 Equivalence of simplicial and singular homology 38 1 Lecture 11 9/24 x1 Degree of a map 39 x2 Computing the degree 42 Lecture 12 9/27 x1 Recap 42 x2 Degree can be calculated locally 43 x3 Cellular homology 44 Lecture 13 [Section] 9/27 x1 Jordan curve theorem 46 x2 Suspensions 47 x3 Example of cellular homology 47 Lecture 14 9/29 x1 An application of degree 47 x2 Cellular homology 48 Lecture 15 10/1 x1 The cellular boundary formula 50 x2 Examples 51 Lecture 16 10/4 x1 Lefschetz fixed point formula 53 x2 Simplicial approximation 55 x3 Proof of the theorem 55 Lecture 17 [Section] 10/4 Lecture 18 10/6 x1 Simplicial approximation theorem 57 x2 Stars 58 x3 Proof of the simplicial approximation theorem 58 x4 Lefschetz fixed point theorem 59 Lecture 19 10/8 x1 Tensor products 60 x2 Torsion products 62 x3 Homology with coefficients 63 x4 A loose end: the trace on a f.g.
    [Show full text]