HALOSIN Indications Therapeutic Class Pharmacology Dosage

Total Page:16

File Type:pdf, Size:1020Kb

HALOSIN Indications Therapeutic Class Pharmacology Dosage the lungs. The remaining 20% is lower concentration is usually HALOSIN metabolized in the liver by oxidative and most suitable for elderly under hypoxic conditions, reductive patients. Indications pathways. The main metabolites are Halothane is a volatile anaesthetic which trifluoroacetic acid, bromide and Interaction is suitable for the induction and chloride salts (via the oxidative Increased risk of ventricular maintenance of anaesthesia for all types pathway) and fluoride salts (via the dysrhythmias with epinephrine. of surgery and in patients of all ages. reductive pathway). The concentrations Increased risk of malignant of metabolites peak 24 hours post- hyperthermia with suxamethonium. Therapeutic Class operatively and are eliminated by renal Prolonged recovery from anaesth with General (Inhalation) anesthetics excretion during the following week. concurrent use of ketamine for induction. May potentiate response to Pharmacology Dosage & Administration non-depolarising muscle relaxants, When inhaled, Halothane is absorbed A number of anaesthetic vaporisers hypotensive agents (e.g. hexamethonium through the alveoli into the bloodstream. specially designed for use with bromide, trimetaphan camsilate). In the bloodstream, Halothane circulates Halothane are available. Open, semi- through the body to the principal site of open, semi-closed and closed circuit Contraindications action, the brain. Here Halothane causes systems have all been used with good Halothane can induce liver damage; a progressive depression of the central results. however, the incidence of severe liver nervous system, beginning with the damage (jaundice, which may lead to higher centers (cerebral cortex) and For induction of anaesthesia: hepatic failure as a consequence of spreading to the vital centers in the massive hepatic cell necrosis) is medulla. This depression is reversible. unknown. The risk of developing hepatic However, its mode of action, like all ▪ Adult: A concentration of 2-4% failure appears to be increased by anaesthetic agents, is unknown. Halothane in Oxygen or Nitrous repeated exposure. Although short Oxide may be used. intervals of time between exposures are Halothane has a relatively low solubility ▪ Children: A concentration of 1.5- likely to increase the risk of in blood and therefore alveoli/blood 2% Halothane in Oxygen or hepatotoxicity, even long intervals concentrations equilibrate rapidly. The Nitrous Oxide is used. between exposures may triexponential decline in Halothane For maintenance of anaesthesia: not eliminate the risks, since some blood concentrations following the end patients have developed severe of administration is thought to represent reactions following Halothane given distribution into three compartments; ▪ Adults and children: A many years after the previous the vessel rich group (brain/heart/liver), concentration of 0.5-2% is exposures. On the information which is the musculature and adipose tissue. usually required for available at the present time, it is Approximately 80% of the inhaled maintenance of anaesthesia. The advised that the following Halothane is eliminated unchanged by precautions be taken anaesthesia with inhalation agents Storage Conditions during early pregnancy, except where Bottles of Halothane must be securely such use is essential. closed and stored in a cool dry place, ▪ A careful anaesthetic history protected from light. Halothane must be should be taken prior to use, to Lactation: There are no well controlled kept in the original container until determine previous exposure studies with Halothane in lactating immediately prior to its use. and previous reactions following women. Halothane has been detected in Halothane anaesthesia. breast milk of lactating women, but the Whilst in the liquid phase, ▪ Repeated exposure to Halothane effect of Halothane on breast feed Halothane must not be diluted or within a period of at least 3 neonates has not been established. contaminated; however, in the vapour months should be avoided However, Halothane has been in wide phase it may be administered together unless there are overriding use for over 30 years without apparent with Oxygen or a mixture of Nitrous clinical circumstances. ill consequence Oxide and Oxygen. ▪ History of unexplained jaundice and pyrexia in a patient following Precautions & Warnings exposure to Caution should be exercised during ▪ Halothane is a contraindication administration of adrenaline to patients to its future use in that patient anaesthetised with Halothane as unless absolutely essential. dysrhythmias may be precipitated. For ▪ Patients should be informed if this reason the dose of adrenaline they have developed a reaction should be restricted and beta-receptor possibly related to Halothane antagonists administered if necessary. anaesthesia; such patients Ensure adequate room ventilation when should be provided with a Halothane is being used. Keep the medical alert card stating the concentration of Halothane in air as low problem. as possible. Side Effects Effect on ability to drive or operate Post-op nausea, vomiting, and shivering; machinery: Patients should be advised resp depression, hypotension, skeletal that performance at skilled tasks, such muscle relaxation, bradycardia. as driving and operating machinery, may be impaired for some time after general Pregnancy & Lactation anaesthesia. Category C: Although the data from experimental investigations in animals Accidental ingestion: Cases of ingestion cannot be directly related to man, it must be treated symptomatically. would be prudent to avoid general .
Recommended publications
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • The Impact of Anaesthesia Protocols on BOLD Fmri Validity in Laboratory Rodents –A Systematic Review
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 The impact of anaesthesia protocols on BOLD fMRI validity in laboratory rodents –a systematic review Steiner, Aline Rebecca Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175731 Dissertation Published Version Originally published at: Steiner, Aline Rebecca. The impact of anaesthesia protocols on BOLD fMRI validity in laboratory rodents –a systematic review. 2019, University of Zurich, Vetsuisse Faculty. Departement für klinische Diagnostik und Services, Abteilung für Anästhesiologie der Vetsuisse-Fakultät Universität Zürich Vorsteherin Departement: Prof. Dr. med. vet. FVH Regina Hofmann-Lehmann Leiterin Abteilung: Prof. Dr. med. vet. PhD, Dipl. ECVAA Regula Bettschart-Wolfensberger The Impact of Anaesthesia Protocols on BOLD fMRI Validity in Laboratory Rodents – a Systematic Review Inaugural-Dissertation zur Erlangung der Doktorwürde der Vetsuisse-Fakultät Universität Zürich vorgelegt von Aline Rebecca Steiner Tierärztin von Frutigen, Bern genehmigt auf Antrag von Prof. Dr. med. vet. PhD, Dipl. ECVAA Regula Bettschart-Wolfensberger, Referentin Dr. med. vet., Dipl. ECVPH Sonja Hartnack, Co-Referentin 2019 Table of Contents Table of Contents ..................................................................................................... 3 Abstract ....................................................................................................................
    [Show full text]
  • Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions Ing Treated
    Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions ing treated. Mannitol infusion has also been used to de Manzanas; Pol.: Purisole SM; Port.: Purisole; Xarope de Macas Reinetas; Rus.: Rheogluman (Реоглюман); Spain: Salcemetic†; Salmagne; Switz.: Mannitol is contra-indicated in patients with pulmo- prevent acute renal failure during cardiovascular and Cital†. nary congestion or pulmonary oedema, intracranial other types of surgery, or after trauma. bleeding (except during craniotomy), heart failure (in To reduce raised intracranial or intra-ocular pres- patients with diminished cardiac reserve, expansion of sure mannitol may be given by intravenous infusion as Mebutamate (BAN, USAN, rINN) the extracellular fluid may lead to fulminating heart a 15 to 25% solution in a dose of 0.25 to 2 g/kg over 30 Mébutamate; Mebutamato; Mebutamatum; W-583. 2-sec-Butyl- failure), and in patients with renal failure unless a test to 60 minutes. Rebound increases in intracranial or 2-methyltrimethylene dicarbamate. dose has produced a diuretic response (if urine flow is intra-ocular pressure may occur but are less frequent Мебутамат inadequate, expansion of the extracellular fluid may than with urea. C10H20N2O4 = 232.3. lead to acute water intoxication). During transurethral prostatic resection a 2.5 to 5% CAS — 64-55-1. Mannitol should not be given with whole blood. ATC — N05BC04. solution of mannitol has been used for irrigating the ATC Vet — QN05BC04. All patients given mannitol should be carefully ob- bladder. served for signs of fluid and electrolyte imbalance and Ciguatera poisoning. Ciguatera poisoning occurs throughout O O renal function should be monitored. the Caribbean and Indopacific as a result of the consumption of certain fish contaminated with ciguatoxin; it is increasingly seen Pharmacokinetics in Europe, in travellers returning from these areas, or as a result H2NO O NH2 Only small amounts of mannitol are absorbed from the of eating imported fish.
    [Show full text]
  • Distinct Pharmacologic Properties of Neuromuscular Blocking Agents On
    Anesthesiology 2006; 105:521–33 Copyright © 2006, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Distinct Pharmacologic Properties of Neuromuscular Blocking Agents on Human Neuronal Nicotinic Acetylcholine Receptors A Possible Explanation for the Train-of-four Fade Malin Jonsson, M.D., Ph.D.,* David Gurley, M.S.,† Michael Dabrowski, Ph.D.,‡ Olof Larsson, Ph.D.,§ Edwin C. Johnson, Ph.D.,# Lars I. Eriksson, M.D., Ph.D.࿣ Background: Nondepolarizing neuromuscular blocking agents intubation and mechanical ventilation and to improve Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/105/3/521/362271/0000542-200609000-00016.pdf by guest on 23 September 2021 (NMBAs) are extensively used in the practice of anesthesia and surgical conditions. intensive care medicine. Their primary site of action is at the Although it is well established that nondepolarizing postsynaptic nicotinic acetylcholine receptor (nAChR) in the ␣ ␤ ␧␦ neuromuscular junction, but their action on neuronal nAChRs NMBAs block the postsynaptic 1 1 nicotinic acetyl- have not been fully evaluated. Furthermore, observed adverse choline receptor (nAChR) subtype at the muscle end- effects of nondepolarizing NMBAs might originate from an in- plate, the effect on the presynaptic motor nerve ending teraction with neuronal nAChRs. The aim of this study was to has not been clarified (for a review, see Vizi and Lend- examine the effect of clinically used nondepolarizing NMBAs on 1,2 2 muscle and neuronal nAChR subtypes. vai and Bowman et al. ). It is believed that the mech- Methods: Xenopus laevis oocytes were injected with messen- anism behind tetanic and train-of-four (TOF) fade during ger RNA encoding for the subunits included in the human neuromuscular block by a nondepolarizing NMBA arise ␣ ␤ ␧␦ ␣ ␤ ␣ ␤ ␣ ␤ ␣ 1 1 , 3 2, 3 4, 4 2, and 7 nAChR subtypes.
    [Show full text]
  • Ep 0665009 A1
    Eu^^esP— || | MMMMI 1 1 1 1 1 1|||| 1 1 1||| || J European Patent Office _ _ _ _ _ © Publication number: 0 665 009 A1 Office europeen desj brevets © EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC © Application number: 93922625.4 © Int. CI.6: A61 K 9/00 @ Date of filing: 13.10.93 © International application number: PCT/JP93/01469 © International publication number: WO 94/08561 (28.04.94 94/10) ® Priority: 14.10.92 JP 303085/92 Koga-gun, Shiga 520-32 (JP) @ Date of publication of application: Inventor: IZUMI, Shougo 02.08.95 Bulletin 95/31 3-94, Nlshltsutsujlgaoka Mlyamadal 1-chome Kameoka-shl, © Designated Contracting States: Kyoto 621 (JP) AT BE CH DE DK ES FR GB GR IE IT LI LU MC Inventor: OKA, Masaakl NL PT SE 18-8-207, Hoshlgaoka 1-chome Hlrakata-shl, © Applicant: NIPPON SHINYAKU COMPANY, Osaka 573 (JP) LIMITED 14, Klssholn Nlshlnosho Monguchlcho Mlnaml-ku © Representative: Vogeser, Werner, Dipl.-lng. et Kyoto-shl al Kyoto 601 (JP) Patent- und Rechtsanwalte Hansmann, Vogeser, Dr. Boecker, © Inventor: NAKAMICHI, Koulchl Alber, Dr. Strych, Lledl 13-16, Kltayamadal 1-chome, Albert-Rosshaupter-Strasse 65 Koselcho D-81369 Munchen (DE) © CRYSTALLINE CONDITION DISLOCATING METHOD. © An object of this invention is to provide a meth- od of the crystalline condition of dislocating cry- \A/ < stalline medicine simply, speedily and homoge- 4 ^ 0 at neously, and, moreover, in large quantities at once. A X. X O O x.X o °o This invention is directed to a method using an x x.x O outlet side melting zonex cooling zone.
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Discriminative Stimulus Effects of Mecamylamine and Nicotine In
    Pharmacology, Biochemistry and Behavior 179 (2019) 27–33 Contents lists available at ScienceDirect Pharmacology, Biochemistry and Behavior journal homepage: www.elsevier.com/locate/pharmbiochembeh Discriminative stimulus effects of mecamylamine and nicotine in rhesus monkeys: Central and peripheral mechanisms T ⁎ Colin S. Cunningham, Megan J. Moerke, Lance R. McMahon Department of Pharmacodynamics, The University of Florida, Gainesville, FL, USA ABSTRACT Mecamylamine is a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist that has been prescribed for hypertension and as an off-label smoking cessation aid. Here, we examined pharmacological mechanisms underlying the interoceptive effects (i.e., discriminative stimulus effects) of mecamylamine (5.6 mg/ kg s.c.) and compared the effects of nAChR antagonists in this discrimination assay to their capacity to block a nicotine discriminative stimulus (1.78 mg/kg s.c.) in rhesus monkeys. Central (pempidine) and peripherally restricted nAChR antagonists (pentolinium and chlorisondamine) dose-dependently substituted for the me- camylamine discriminative stimulus in the following rank order potency (pentolinium > pempidine > chlorisondamine > mecamylamine). In contrast, at equi- effective doses based on substitution for mecamylamine, only mecamylamine antagonized the discriminative stimulus effects of nicotine, i.e., pentolinium, chlor- isondamine, and pempidine did not. NMDA receptor antagonists produced dose-dependent substitution for mecamylamine with the following rank order potency (MK-801 > phencyclidine > ketamine). In contrast, behaviorally active doses of smoking cessation aids including nAChR agonists (nicotine, varenicline, and cytisine), the smoking cessation aid and antidepressant bupropion, and the benzodiazepine midazolam did not substitute for the discriminative stimulus effects of mecamylamine. These data suggest that peripheral nAChRs and NMDA receptors may contribute to the interoceptive stimulus effects produced by mecamylamine.
    [Show full text]
  • Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys
    1521-0103/366/2/397–409$35.00 https://doi.org/10.1124/jpet.118.248070 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:397–409, August 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys Sarah L. Withey,1 Michelle R. Doyle,1,2 Jack Bergman, and Rajeev I. Desai Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts Received January 27, 2018; accepted May 17, 2018 ABSTRACT Evidence suggests that the a4b2, but not the a7, subtype of the except for lobeline, the nicotinic agonists produced either full nicotinic acetylcholine receptor (nAChR) plays a key role in [(1)-epibatidine, (2)-epibatidine, and nicotine] or partial (vare- Downloaded from mediating the behavioral effects of nicotine and related drugs. nicline, cytisine, anabaseine, and isoarecolone) substitution for However, the importance of other nAChR subtypes remains (1)-epibatidine. In interaction studies with antagonists differing unclear. The present studies were conducted to examine the in selectivity, (1)-epibatidine discrimination was substan- involvement of nAChR subtypes by determining the effects of tively antagonized by mecamylamine, slightly attenuated selected nicotinic agonists and antagonists in squirrel monkeys by hexamethonium (peripherally restricted) or dihydro- b a either 1) responding for food reinforcement or 2) discriminating the -erythroidine, and not altered by methyllycaconitine ( 7 jpet.aspetjournals.org nicotinic agonist (1)-epibatidine (0.001 mg/kg) from vehicle. In selective). Varenicline and cytisine enhanced (1)-epibati- food-reinforcement studies, nicotine, (1)-epibatidine, varenicline dine’s discriminative-stimulus effects.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]