Committee for Veterinary Medicinal Products

Total Page:16

File Type:pdf, Size:1020Kb

Committee for Veterinary Medicinal Products The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/MRL/687/99-FINAL August 1999 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS ECHINACEA (use in veterinary homeopathy) SUMMARY REPORT 1. Echinacea species are plants of the Asteraceae family. Homeopathic preparations of Echinacea according to homeopathic pharmacopoeias are prepared by ethanolic extraction of the whole fresh (flowering) aerial parts and/or roots of the plant subspecies Echinacea angustifolia, Echinacea pallida or Echinacea purpurea. In the past a clear distinction between the species Echinacea angustifolia and Echinacea pallida has not always been made. Therefore data on constituents relate to either Echinacea angustifolia or Echinacea pallida or both. Constituents of the whole plant of Echinacea angustifolia and/or Echinacea pallida include caffeic acid derivatives as verbascoside, echinacoside (0.3 to 1.3% in the roots), cynarine, chlorogenic and isochlorogenic acid, flavonoids (such as rutin, kaempferol, quercetin), alkamides such as dodeca-2E,4E,8Z,10E-tetraenic acid isobutylamide as well as polysaccharides. The volatile oil (less than 0.1% in the roots of Echinacea angustifolia, up to 2% in the roots of Echinacea pallida, less in the leaves, more in certain parts of the blossoms) contain alkenes and alkanones such as dodeca-2,4-dien-1-yl-isovalerianate, pentadeca-1,8-Z-diene and ketoalkenines as well as epishyobunol, ß-farnesene, a- and ß-pinene, myrcene, carvomenthene, caryophyllene. In the roots the pyrrolizidine alkaloids tussilagin (0.006%) and isotussilagin with a saturated necine configuration have been demonstrated, as well as polyacetylenes (e.g. trideca-1- en-3,5,7,9,11-pentain and pontiacepoxid). Additionally, sesquiterpenes as germacrene-alcohol, betain, phytosterols, fatty acids and resins are found at low concentrations. Echinacea purpurea contains a similar spectrum of constituents: Caffeic acid derivatives (0.6 to 3.1% of cichorienic acid (2,3-O-dicaffeoyl-tartaric acid) in different parts of Echinacea purpurea) and other glycosides, flavonoids (such as rutin, kaempferol, quercetin), polyacetylenes, alkyamides and polysaccharides as well as pyrrolizidine alkaloids of the saturated type (approximately 0.006% in Echinacea purpurea). Other constituents are betaine, fatty acids, phytosterol, resin and volatile oil (less than 0.1% in all parts of Echinacea purpurea). Echinacea purpurea has previously been assessed by the Committee for Veterinary Medicinal Products (CVMP) in respect to its use in veterinary phytotherapy and is included in Annex II of Council Regulation (EEC) No 2377/90 as follows: Pharmacologically active Animal species Other provisions substance(s) Echinacea purpurea All food producing species For topical use only 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Switchboard (44-20-7) 418 8400 Fax (44-20-7) 418 8447 E-mail: [email protected] http://www.eudra.org/emea.html ãEMEA 2000 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged 2. This application relates to the hmoepathic mother tincture of Echinacea (Echinacea angustifolia, Echinacea pallida, Echinacea purpurea) and dilutions thereof, which are intended for use in all food-producing species. The maximum recommended parenteral dosage for large animals is 10 ml/animal. The use follows the principles of homeopathic therapy where animals are diagnosed on basis of the individual pattern of clinical signs. Treatment may be repeated but a fixed dose schedule is not common in homeopathy. The drug is also used in human homeopathy as the mother tincture as well as in lower concentrations. 3. Claimed pharmacodynamic effects of homeopathic formulations of Echinacea include immunomodulating activity, mainly immunostimulation via T-cell activation and enhancement of phagocytosis, leading to antiviral and antibacterial action, promotion of wound healing possibly induced by stimulation of fibroblast cell growth, and antihyaluronidase activity. After frequent treatment an inhibiting action on the immune system has also been reported. Antiphlogistic as well as tumorsuppressive effects have also been postulated. Several of these effects have been connected with the polysaccharide fraction of the plant; but individual caffeic acid derivatives such as echinacoside, the alkamide fraction, and the polyacetylene fraction have been related to the above activities as well as to antiviral, antibacterial and antifungal activity of the plant extracts. The fresh and the dried press sap of Echinacea purpurea cause a significant in vitro stimulation of cytokine production by human peripheral blood macrophages at concentrations as low as 0.012 mg/ml. A 1:10 dilution of the dry matter of an ethanolic root extract stimulated in vitro phagocytosis in human granulocytes. The polysaccharide extract of Echinacea was shown to have an antihyaluronidase activity. 4. The acute toxicity of Echinacea angustifolia preparations is generally reported to be low. LD50 values, however, are not available. The LD50 of the Echinacea purpurea fresh pressed juice (aerial parts only) was above 5 and 10 g/kg bw after intravenous injection and 15 and 30 g/kg bw after oral administration in rats and mice, respectively. 5. Information on the repeated dose toxicity of Echinacea purpurea fresh pressed juice (aerial parts only) indicated that the daily administration of doses of 800, 2400 or 8000 mg/kg bw for four weeks did not induce changes in clinical chemistry values or at necropsy in comparison to the control group (no details available). 6. No information on the reproductive toxicity, including embryotoxicity and teratogenicity was submitted. 7. No information was provided on the mutagenic and genotoxic properties of Echinacea angustifolia or its constituents. Echinacea purpurea (fresh pressed juice from aerial parts) was not mutagenic in the Salmonellamicrosomal asssay with and without metabolic activation at concentrations up to 5000 mg/plate. It also had no effect in a gene mutation test in L5178 Y mouse lymphoma cells at the HPRT locus, with and without metabolic activation, in a cytogenetic assay in primary human lymphocyte culture, in the cell transformation assay in Syrian hamster embryo cells and in an in vivo micronucleus test in male and female mice. Some of the caffeic acid derivatives, such as cynarin, chlorogenic and cichoric acid, have been reported to exert mutagenic effects in certain bacterial or mammalian mutagenicity tests. However, most of these compounds, as secondary metabolites in plants, are natural ingredients of the human diet. In addition, they have been connected with antimutagenic and anticarcinogenic effects in humans via antioxidant properties. 8. No information on the carcinogenicity of Echinacea was submitted. The pyrrolizidine alkaloids tussilagin and isotussilagin reported to occur at low concentrations in the roots are saturated in necine moiety, and therefore do not possess structural alerts as regards liver toxicity and neoplasia reported for pyrrolizidine compounds with unsaturated necine configuration. 2/3 ãEMEA 2000 9. In human medicine preparations of Echinacea purpurea are used by dermal and oral administration. Indications include common colds and infections of the respiratory tract for oral administration, and wound healing for dermal administration. Oral doses are 6 to 9 ml/day of the freshly pressed plant juice and may be taken up to 8 weeks. With the exception of allergic reactions, no adverse effects in humans after oral or dermal treatment have been reported. However, parenteral administration is reported to cause as nausea, fever. The parenteral administration of homeopathic preparations of Echinacea in lower dilutions than 1:10000 is contraindicated in cases of autoimmune diseases, progredient inflammatory processes, leukaemia and diabetes mellitus. 10. In view of the similarity of the constituent profile of the different subspecies of Echinacea the previous assessment of Echinacea purpurea by the CVMP also applies to the topical use of Echinacea in medicinal products used in veterinary homeopathy, in all concentrations including the mother tincture. The use of Echinacea in veterinary homeopathy was further considered in a preliminary risk evaluation procedure by the CVMP, considering all defended old substances used in veterinary homeopathy in concentrations greater than 1:10 000. Apart from the above reported information on toxicity, further information made available and systematic search of published literature did not provide any further evidence for pharmacological or toxicological properties of Echinacea and its constituents alerting to specific health risks, which may result from residues in food producing animals following the intended uses. Special emphasis was put on identification of suspicion pointing to genotoxicity or other potential of serious health effects of plant constituents. It was concluded, that for all other routes of administration homeopathic dilutions of Echinacea resulting in concentrations in the veterinary medicinal product not exceeding 1 part per 10 may be used, as they can be considered as not giving rise to any specific consumer health concerns and provide a sufficient margin of safety. Conclusions and recommendation Having considered the criteria laid down by the Committee for the inclusion of substances in Annex II of Council Regulation (EEC) No 2377/90 and in particular that: · the subspecies Echinacea
Recommended publications
  • Verbascoside — a Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance
    Biotechnology Advances 32 (2014) 1065–1076 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Verbascoside — A review of its occurrence, (bio)synthesis and pharmacological significance Kalina Alipieva a,⁎, Liudmila Korkina b, Ilkay Erdogan Orhan c, Milen I. Georgiev d a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria b Molecular Pathology Laboratory, Russian Research Medical University, Ostrovityanova St. 1A, Moscow 117449, Russia c Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey d Laboratory of Applied Biotechnologies, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria article info abstract Available online 15 July 2014 Phenylethanoid glycosides are naturally occurring water-soluble compounds with remarkable biological proper- ties that are widely distributed in the plant kingdom. Verbascoside is a phenylethanoid glycoside that was first Keywords: isolated from mullein but is also found in several other plant species. It has also been produced by in vitro Acteoside plant culture systems, including genetically transformed roots (so-called ‘hairy roots’). Verbascoside is hydro- fl Anti-in ammatory philic in nature and possesses pharmacologically beneficial activities for human health, including antioxidant, (Bio)synthesis anti-inflammatory and antineoplastic properties in addition to numerous wound-healing and neuroprotective Cancer prevention Cell suspension culture properties. Recent advances with regard to the distribution, (bio)synthesis and bioproduction of verbascoside Hairy roots are summarised in this review. We also discuss its prominent pharmacological properties and outline future Phenylethanoid glycosides perspectives for its potential application. Verbascum spp. © 2014 Elsevier Inc. All rights reserved. Contents Treasurefromthegarden:thediscoveryofverbascoside,anditsoccurrenceanddistribution..........................
    [Show full text]
  • Redalyc.Identification and Characterisation of Phenolic
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil LEOUIFOUDI, Inass; ZYAD, Abdelmajid; AMECHROUQ, Ali; OUKERROU, Moulay Ali; MOUSE, Hassan Ait; MBARKI, Mohamed Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater Ciência e Tecnologia de Alimentos, vol. 34, núm. 2, abril-junio, 2014, pp. 249-257 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395940095005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/fst.2014.0051 Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater Inass LEOUIFOUDI1,2*, Abdelmajid ZYAD2, Ali AMECHROUQ3, Moulay Ali OUKERROU2, Hassan Ait MOUSE2, Mohamed MBARKI1 Abstract Olive mill wastewater, hereafter noted as OMWW was tested for its composition in phenolic compounds according to geographical areas of olive tree, i.e. the plain and the mountainous areas of Tadla-Azilal region (central Morocco). Biophenols extraction with ethyl acetate was efficient and the phenolic extract from the mountainous areas had the highest concentration of total phenols’ content. Fourier-Transform-Middle Infrared (FT-MIR) spectroscopy of the extracts revealed vibration bands corresponding to acid, alcohol and ketone functions. Additionally, HPLC-ESI-MS analyses showed that phenolic alcohols, phenolic acids, flavonoids, secoiridoids and derivatives and lignans represent the most abundant phenolic compounds.
    [Show full text]
  • Value Addition of Southern African Monkey Orange (Strychnos Spp.): Composition, Utilization and Quality Ruth Tambudzai Ngadze
    Value addition of Southern African monkey orange ( Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze 2018 Ruth Tambudzai Ngadze Propositions 1. Food nutrition security can be improved by making use of indigenous fruits that are presently wasted, such as monkey orange. (this thesis) 2. Bioaccessibility of micronutrients in maize-based staple foods increases by complementation with Strychnos cocculoides. (this thesis) 3. The conclusion from Baker and Oswald (2010) that social media improve connections, neglects the fact that it concomitantly promotes solitude. (Journal of Social and Personal Relationships 27:7, 873–889) 4. Sustainable agriculture in developed countries can be achieved by mimicking third world small-holder agrarian systems. 5. Like first time parenting, there is no real set of instructions to prepare for the PhD journey. 6. Undertaking a sandwich PhD is like participating in a survival reality show. Propositions belonging to the thesis, entitled: Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth T. Ngadze Wageningen, October 10, 2018 Value addition of Southern African monkey orange (Strychnos spp.): composition, utilization and quality Ruth Tambudzai Ngadze i Thesis committee Promotor Prof. Dr V. Fogliano Professor of Food Quality and Design Wageningen University & Research Co-promotors Dr A. R. Linnemann Assistant professor, Food Quality and Design Wageningen University & Research Dr R. Verkerk Associate professor, Food Quality and Design Wageningen University & Research Other members Prof. M. Arlorio, Università degli Studi del Piemonte Orientale A. Avogadro, Italy Dr A. Melse-Boonstra, Wageningen University & Research Prof.
    [Show full text]
  • Isolation and Functional Characterization of a Cdna Coding A
    Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, Alain Hehn, Romain Larbat, Frédéric Bourgaud To cite this version: Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, et al.. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenyl- propanoid biosynthesis in Cynara cardunculus L. BMC Plant Biology, BioMed Central, 2007, 7 (1), pp.14. 10.1186/1471-2229-7-14. hal-01738035 HAL Id: hal-01738035 https://hal.archives-ouvertes.fr/hal-01738035 Submitted on 20 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License BMC Plant Biology BioMed Central Research article Open Access Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus
    [Show full text]
  • The Sonodegradation of Caffeic Acid Under Ultrasound Treatment: Relation to Stability
    Molecules 2013, 18, 561-573; doi:10.3390/molecules18010561 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article The Sonodegradation of Caffeic Acid under Ultrasound Treatment: Relation to Stability Yujing Sun 1,2, Liping Qiao 1, Xingqian Ye 1,2,*, Donghong Liu 1,2, Xianzhong Zhang 1 and Haizhi Huang 1 1 Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China 2 Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-571-8898-2155. Received: 17 October 2012; in revised form: 16 December 2012 / Accepted: 19 December 2012 / Published: 4 January 2013 Abstract: The degradation of caffeic acid under ultrasound treatment in a model system was investigated. The type of solvent and temperature were important factors in determining the outcome of the degradation reactions. Liquid height, ultrasonic intensity and duty cycle only affected degradation rate, but did not change the nature of the degradation. The degradation rate of caffeic acid decreased with increasing temperature. Degradation kinetics of caffeic acid under ultrasound fitted a zero-order reaction from −5 to 25 °C. Caffeic acid underwent decomposition and oligomerization reactions under ultrasound. The degradation products were tentatively identified by FT-IR and HPLC-UV-ESIMS to include the corresponding decarboxylation products and their dimers. Keywords: ultrasound; caffeic acid; stability; kinetics; degradation 1. Introduction Caffeic acid and its analogues are widely distributed in the plant kingdom and are found in coffee beans, olives, propolis, fruits, and vegetables [1–3].
    [Show full text]
  • Chemical Diversity of Bastard Balm (Melittis Melisophyllum L.) As Affected by Plant Development
    molecules Article Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development Izabela Szymborska-Sandhu , Jarosław L. Przybył , Olga Kosakowska , Katarzyna B ˛aczek* and Zenon W˛eglarz Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences–SGGW, 166 Nowoursynowska Street, 02-787 Warsaw, Poland; [email protected] (I.S.-S.); [email protected] (J.L.P.); [email protected] (O.K.); [email protected] (Z.W.) * Correspondence: [email protected]; Tel.: +48-22-593-22-58 Academic Editors: Federica Pellati, Laura Mercolini and Roccaldo Sardella Received: 7 May 2020; Accepted: 21 May 2020; Published: 22 May 2020 Abstract: The phytochemical diversity of Melittis melissophyllum was investigated in terms of seasonal changes and age of plants including plant organs diversity. The content of phenolics, namely: coumarin; 3,4-dihydroxycoumarin; o-coumaric acid 2-O-glucoside; verbascoside; apiin; luteolin-7-O-glucoside; and o-coumaric; p-coumaric; chlorogenic; caffeic; ferulic; cichoric acids, was determined using HPLC-DAD. Among these, luteolin-7-O-glucoside, verbascoside, chlorogenic acid, and coumarin were the dominants. The highest content of flavonoids and phenolic acids was observed in 2-year-old plants, while coumarin in 4-year-old plants (272.06 mg 100 g–1 DW). When considering seasonal changes, the highest content of luteolin-7-O-glucoside was observed at the full flowering, whereas verbascoside and chlorogenic acid were observed at the seed-setting stage. Among plant organs, the content of coumarin and phenolic acids was the highest in leaves, whereas verbascoside and luteolin-7-O-glucoside were observed in flowers.
    [Show full text]
  • Production of Verbascoside, Isoverbascoside and Phenolic
    molecules Article Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts Paweł Kubica 1 , Agnieszka Szopa 1,* , Adam Kokotkiewicz 2 , Natalizia Miceli 3 , Maria Fernanda Taviano 3 , Alessandro Maugeri 3 , Santa Cirmi 3 , Alicja Synowiec 4 , Małgorzata Gniewosz 4 , Hosam O. Elansary 5,6,7 , Eman A. Mahmoud 8, Diaa O. El-Ansary 9, Omaima Nasif 10, Maria Luczkiewicz 2 and Halina Ekiert 1,* 1 Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; [email protected] 2 Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gda´nsk,Poland; [email protected] (A.K.); [email protected] (M.L.) 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (N.M.); [email protected] (M.F.T.); [email protected] (A.M.); [email protected] (S.C.) 4 Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, ul. Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] (A.S.); [email protected] (M.G.) 5 Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] 6 Floriculture, Ornamental Horticulture,
    [Show full text]
  • Agriculture and Forestry
    Agriculture & Forestry, Vol. 62 Issue 1: 325-342, 2016, Podgorica 325 DOI: 10.17707/AgricultForest.62.1.35 Ljubica IVANOVIĆ, Ivana MILAŠEVIĆ, Dijana ĐUROVIĆ, Ana TOPALOVIĆ,Mirko KNEŽEVIĆ, Boban MUGOŠA, Miroslav M. VRVIĆ1 APPLICATION OF PLANT BIOTECHNOLOGY TECHNIQUES IN ANTIOXIDANT PRODUCTION SUMMARY Nowadays, antioxidant compounds are receiving increased attention in scholarly literature as well as in research. Antioxidants are a diverse group of compounds that can neutralize free radicals and thus help prevent diseases that are a consequence of oxidative stress. The most common antioxidant compounds are vitamins (A-carotenoids, C and E), thiols molecules (thioredoxins, glutathione), phenolic compounds (phenolic acids and flavonoids), enzymes and metal ions, as well as others. Plants have been shown to be an excellent source of antioxidant compounds, such as carotenoids, polyphenols, vitamins and betalains. Plant biotechnology uses the genetic engineering of agricultural crops as a means of producing foods rich in antioxidant nutrients, whilst plant cells and tissue culture techniques are used for the in vitro increment of antioxidant compounds in plant cells. There are numerous inspiring and promising reports about the possibilities of plant biotechnology that should provoke and encourage more research focused on antioxidant production from plants. The exogenous antioxidant molecules of important to human health (since endogenous antioxidants can be produced by the human cell itself) and the use of genetic engineering and plant cell culture techniques in antioxidant production in commonly used crops are presented in this paper. Keywords: antioxidants, plant biotechnology, genetic engineering, plant tissue culture INTRODUCTION There has been a growing interest in the role of antioxidants in chronic diseases caused by oxidative stress.
    [Show full text]
  • Method for Solubilizing, Separating, Removing And
    (19) TZZ Z_T (11) EP 2 585 420 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07B 63/04 (2006.01) 06.04.2016 Bulletin 2016/14 (86) International application number: (21) Application number: 11730572.2 PCT/EP2011/003182 (22) Date of filing: 22.06.2011 (87) International publication number: WO 2011/160857 (29.12.2011 Gazette 2011/52) (54) METHOD FOR SOLUBILIZING, SEPARATING, REMOVING AND REACTING CARBOXYLIC ACIDS IN OILS, FATS, AQUEOUS OR ORGANIC SOLUTIONS BY MEANS OF MICRO- OR NANOEMULSIFICATION VERFAHREN ZUM AUFLÖSEN, TRENNEN, ENTFERNEN UND REAGIEREN VON CARBONSOSÄUREN IN ÖLEN, FETTEN, WÄSSRIGEN ODER ORGANISCHEN LÖSUNGEN MITTELS MIKRO- ODER NANOEMULGIERUNG PROCÉDÉ POUR SOLUBILISER, SÉPARER, ÉLIMINER ET FAIRE RÉAGIR DES ACIDES CARBOXYLIQUES DANS DES HUILES, DES GRAISSES, DES SOLUTIONS AQUEUSES OU ORGANIQUES PAR MICRO- OU NANO-ÉMULSIFICATION (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • MURA P ET AL: "TERNARY SYSTEMS OF GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO NAPROXEN WITH PL PT RO RS SE SI SK SM TR HYDROXYPROPYL-BETA-CYCLODEXTRIN AND AMINOACIDS", INTERNATIONAL JOURNAL OF (30) Priority: 28.06.2010 US 344311 P PHARMACEUTICS, ELSEVIER BV, NL LNKD- 22.06.2010 EP 10075274 DOI:10.1016/S0378-5173(03)00265-5,vol. 260, no. 2, 24 July 2003 (2003-07-24) , pages 293-302, (43) Date of publication of application: XP008062550, ISSN: 0378-5173 01.05.2013 Bulletin 2013/18 • AYAKO HIRAI ET AL: "Effects of l-arginine on aggregates of fatty-acid/potassium soap in the (60) Divisional application: aqueous media", COLLOID AND POLYMER 16155130.4 SCIENCE ; KOLLOID-ZEITSCHRIFT UND ZEITSCHRIFT FÜR POLYMERE, SPRINGER, (73) Proprietor: Dietz, Ulrich BERLIN, DE LNKD- 65193 Wiesbaden (DE) DOI:10.1007/S00396-005-1423-1, vol.
    [Show full text]
  • Assessment Report on Cynara Scolymus L., Folium
    13 September 2011 EMA/HMPC/150209/2009 Committee on Herbal Medicinal Products (HMPC) Assessment report on Cynara scolymus L., folium Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific name of the plant, including plant part) Cynara scolymus L., Cynarae folium Herbal preparation(s) a) Comminuted or powdered dried leaves for herbal tea b) Powdered leaves c) Dry extract (DER 2.5-7.5:1), extraction solvent water d) Dry extract of fresh leaves (DER 15-35:1), extraction solvent water e) Soft extract of fresh leaves (DER 15-30:1), extraction solvent water f) Soft extract (DER 2.5-3.5:1), extraction solvent ethanol 20% (v/v) Pharmaceutical forms Comminuted herbal substance as herbal tea for oral use. Herbal preparations in solid or liquid form for oral use Rapporteur Dr Ioanna B. Chinou Assessor Dr Ioanna B. Chinou 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2012. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 1. Introduction ....................................................................................................................... 3 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .. 3 1.2. Information about products on the market in the Member States ............................... 5 1.3. Search and assessment methodology ................................................................... 14 2. Historical data on medicinal use ...................................................................................... 14 2.1.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0213881 A1 Chien Et Al
    US 2004O213881A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0213881 A1 Chien et al. (43) Pub. Date: Oct. 28, 2004 (54) TASTE MODIFIERS COMPRISINGA Publication Classification CHLOROGENIC ACID (51) Int. Cl." ....................................................... A23L 1/22 (76) Inventors: Minjien Chien, West Chester, OH (52) U.S. Cl. .............................................................. 426/534 (US); Alex Hausler, Hedingen (CH); Hans Van Leersum, Morrow, OH (US) (57) ABSTRACT Correspondence Address: Norris McLaughlin & Marcus 30th Floor The present invention discloses a method to modify the taste 220 East 42nd Street profile of consumables by adding esters of quinic acid and New York, NY 10017 (US) cinnamic acid derivatives. These esters, which belong to the family of chlorogenic acid, may be Synthetic or may be (21) Appl. No.: 10/480,372 extracted from a natural Source Such as a botanical. Chlo rogenic acid is added to consumables to mask bitter off (22) PCT Filed: Jun. 12, 2002 tastes or other displeasing tastes imparted by one or more natural, Synthetic or Semi-Synthetic components in the con (86) PCT No.: PCT/CH02/00315 Sumable. US 2004/0213881 A1 Oct. 28, 2004 TASTE MODIFIERS COMPRISINGA 0008 Surprisingly, we have now found that unpleasant CHLOROGENIC ACID off-tastes in consumables may be modified or the taste or taste perception may be improved by the inclusion of 0001. The invention relates to consumables, the taste chlorogenic acid in Said consumables. profiles of which may be modified by the addition of chlorogenic acid. 0009. Therefore, the invention provides in a first aspect a consumable comprising an amount of chlorogenic acid 0002 Various consumables, such as food products, bev sufficient to modify off-tastes of said consumables.
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]