Epigenetic Changes in Islets of Langerhans Preceding the Onset of Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Changes in Islets of Langerhans Preceding the Onset of Diabetes Diabetes Volume 69, November 2020 2503 Epigenetic Changes in Islets of Langerhans Preceding the Onset of Diabetes Meriem Ouni,1,2 Sophie Saussenthaler,1,2 Fabian Eichelmann,2,3 Markus Jähnert,1,2 Mandy Stadion,1,2 Clemens Wittenbecher,2,3,4 Tina Rönn,5 Lisa Zellner,1,2 Pascal Gottmann,1,2 Charlotte Ling,5 Matthias B. Schulze,2,3,6 and Annette Schürmann1,2,6 Diabetes 2020;69:2503–2517 | https://doi.org/10.2337/db20-0204 GENETICS/GENOMES/PROTEOMICS/METABOLOMICS The identification of individuals with a high risk of de- Alarming incident rates worldwide are projected to in- veloping type 2 diabetes (T2D) is fundamental for pre- crease the current prevalence of type 2 diabetes (T2D) vention. Here, we used a translational approach and from 422 million to 592 million in 2035 (1). T2D is prediction criteria to identify changes in DNA methyla- a progressive, chronic disorder with a long asymptomatic tion visible before the development of T2D. Islets of phase, averting detection for many years (2,3). Better Langerhans were isolated from genetically identical disease management might be possible with earlier de- 10-week-old female New Zealand Obese mice, which tection through robust, sensitive, and easily accessible differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative ap- biomarkers of T2D. proach identified 497 differentially expressed and T2D is characterized by chronic hyperglycemia, which is methylated genes (P 5 6.42e-09, hypergeometric test) caused by an impaired insulin secretion from pancreatic enriched in pathways linked to insulin secretion and b-cells and an insulin resistance of target tissues. Aging, extracellular matrix-receptor interaction. The compar- a sedentary lifestyle, and obesity contribute to insulin re- ison of mouse data with DNA methylation levels of sistance. After long-term exposure to elevated lipid and incident T2D cases from the prospective European Pro- glucose levels, pancreatic islet function decreases (4,5), which spective Investigation of Cancer (EPIC)-Potsdam co- leads to insufficient compensation and a loss of b-cells. hort, revealed 105 genes with altered DNA methylation The involvement of epigenetic mechanisms in T2D at 605 cytosine-phosphate-guanine (CpG) sites, which development emerged as a promising research area (6). were associated with future T2D. AKAP13, TENM2, One epigenetic modification is DNA methylation, which CTDSPL, PTPRN2,andPTPRS showed the strongest mainly occurs at the 59 carbon of cytosine-phosphate- predictive potential (area under the receiver operating guanine (CpG) sites (7,8). DNA methylation marks are characteristic curve values 0.62–0.73). Among the new established during prenatal and early postnatal develop- candidates identified in blood cells, 655 CpG sites, ment and function throughout life to maintain the diverse located in 99 genes, were differentially methylated in gene expression patterns of different cell types (9,10) but islets of humans with T2D. Using correction for multiple can also arise later in somatic cells either by random events testing detected 236 genes with an altered DNA meth- or under the influence of the environment (11,12). Thus, ylation in blood cells and 201 genes in diabetic islets. tissue specificity and flexibility of DNA methylation in Thus, the introduced translational approach identified response to the environment are two major problems to novel putative biomarkers for early pancreatic islet face in order to identify stable epigenetic biomarkers of aberrations preceding T2D. disease risk. The aim of our translational study was to 1Department of Experimental Diabetology, German Institute of Human Nutrition Received 9 March 2020 and accepted 9 August 2020 Potsdam-Rehbruecke, Brandenburg, Germany This article contains supplementary material online at https://doi.org/10.2337/ 2 German Center for Diabetes Research, München-Neuherberg, Germany figshare.12794957. 3Department of Molecular Epidemiology, German Institute of Human Nutrition S.S. and F.E. equally contributed to the work. Potsdam-Rehbruecke, Brandenburg, Germany 4Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA © 2020 by the American Diabetes Association. Readers may use this article as 5Department of Clinical Sciences, Lund University, Malmö, Sweden long as the work is properly cited, the use is educational and not for profit, and the 6Institute of Nutritional Science, University of Potsdam, Potsdam, Germany work is not altered. More information is available at https://www.diabetesjournals .org/content/license. Corresponding author: Annette Schürmann, [email protected] 2504 Epigenetic Marks and Type 2 Diabetes Risk Diabetes Volume 69, November 2020 identify early epigenetic marks related to T2D by uncov- protocol, with additional DNase treatment. RNA samples ering methylome alterations in pancreatic islets of mice with RNA integrity number $8 (Agilent Bioanalyzer) were that occur before the onset of severe hyperglycemia and selected for RNA-seq. Transcriptome sequencing was carried assessing prospective T2D risk information conveyed by out by GATC biotech (Konstanz, Germany) on an Illumina congruent differential methylation in human blood. HiSeq platform. Adapters were trimmed and reads filtered for quality by using the wrapper Trim Galore! v0.4.2 and RESEARCH DESIGN AND METHODS Cutadapt 1.9.1 with option phred33. FastQC v0.11.5 was Animals, Diets, and Experimental Design used to check sample quality. Alignment of reads to reference A full description of animals and diets was detailed pre- genome was performed with HISAT2 v2.1.0, and fragments viously (13,14). At 5 weeks of age, female New Zealand per kilobase of exon model per million reads mapped values Obese (NZO) mice were placed on a high-fat diet (HFD) for transcripts was determined by Cufflinks 2.2.1, both with (20% kcal protein, 20% kcal carbohydrate, 60% kcal fat; default options for paired reads. We considered only tran- D12492; Research Diets) for 5 weeks. Five weeks after scripts with fragments per kilobase of exon model per million switching the diet, mice were killed during midlight cycle reads mapped mean values .1/group. Kyoto Encyclopedia of with acute exposure to isoflurane (Fig. 2A). Animal studies Genes and Genomes (KEGG) analysis was performed by the were approved by the animal welfare committees of the using DAVID 7 tool (16), with cutoff enrichment score set German Institute of Human Nutrition Potsdam-Rehbruecke to .1.7 and enriched P , 0.05. Network analysis was and local authorities (Landesamt für Umwelt, Gesundheit obtained with Ingenuity Pathway Analysis (IPA) (QIAGEN) und Verbraucherschutz, Brandenburg, Germany). (Supplementary Table 1). Pancreatic Islet Isolation WGBS in Pancreatic Islets Islet isolation was performed as described (15). Islets isolated Genomic DNA from NZO islets was isolated using Invisorb fromtwotofourmice(30–110 islets/mouse) were pooled Genomic DNA Kit II. One microgram of genomic DNA per sample for RNA sequencing (RNA-seq) and whole- from each pool was bisulfite converted (Zymo Research genome bisulfite sequencing (WGBS). The total number Corporation, Irvine, CA), and library preparation and of islets used for nucleic acid extraction was 900 and 1,500 sequencing steps were carried out by GATC. WGBS data for RNA and DNA, respectively. For RNA-seq of diabetes- in fastq format were generated using an Illumina HiSeq resistant (DR) mice, four individual islet pools were used platform for further analyses. Raw data have been quality that contained islets from 2 mice/pool; for diabetes-prone controlled and processed using Trim Galore! v0.4.2, (DP)mice, five pools were used that contained 2–3 mice/ FastQC v0.11.5, Bismark v0.17.08 (17), and MethPipe pool. WGBS was performed with five pools per group v3.4.2 (18) (Supplementary Table 1). from 4 animals/pool (Supplementary Table 1). Thus, A reference genome file was generated by combining each sample of islet pools comprised islets from differ- a GRCm38.68 B6 reference and a GRCm38p4 single nu- ent mice. cleotide polymorphism file in order to exchange all B6 with NZO high-quality single nucleotide polymorphisms. Meth- Blood Glucose, Body Weight, Body Composition, and ylation counting was carried out with MethPipe v3.4.2 Liver Fat Content default options. Body weight and blood glucose were measured from 7:00 Nonsymmetric CpG sites have been withdrawn, P values to 9:00 A.M. on a weekly basis by using a Contour blood have been calculated using log-likelihood ratio test. For the glucose meter (Bayer). At 5, 7, and 10 weeks of age, body final analysis, CpG sites that fit to the following criteria composition and liver fat content were analyzed using were used: 1) at least four of five samples with read counts nuclear magnetic resonance and computed tomography as in both groups, 2) average of read counts per group .20, described (14). and 3) SD per group .0 in both groups. Plasma Analysis Plasma adiponectin and leptin levels were measured by DNA Methylation Analysis in Human Blood Cells Mouse Adiponectin/Acrp30 (DY1119; R&D Systems) and The study sample is a nested case-control study derived from Mouse/Rat Leptin (MOB00; R&D Systems) ELISA kits, the prospective European Prospective Investigation into 5 respectively. Plasma triglycerides (T2449, F6428, G7793; Cancer and Nutrition (EPIC)-Potsdam cohort study (n Sigma), free fatty acids (91096, 91898, 91696; Wako), 27,548) designed to estimate the association of baseline cholesterol (10017, HUMAN), ALT (12212, HUMAN), AST measurements to
Recommended publications
  • Identification of Chebulinic Acid As a Dual Targeting Inhibitor of Protein
    Bioorganic Chemistry 90 (2019) 103087 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Short communication Identification of chebulinic acid as a dual targeting inhibitor of protein T tyrosine phosphatases relevant to insulin resistance Sun-Young Yoona,1, Hyo Jin Kangb,1, Dohee Ahna, Ji Young Hwanga, Se Jeong Kwona, ⁎ Sang J. Chunga, a School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea b Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the Protein tyrosine phosphatases (PTPs) protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as Chebulinic acid potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 Type 2 diabetes increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could Glucose-uptake be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 PTPN9 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding toPTPN9 PTPN11 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Comprehensive Protein Tyrosine Phosphatase Mrna Profiling Identifies New Regulators in the Progression of Glioma Annika M
    Bourgonje et al. Acta Neuropathologica Communications (2016) 4:96 DOI 10.1186/s40478-016-0372-x RESEARCH Open Access Comprehensive protein tyrosine phosphatase mRNA profiling identifies new regulators in the progression of glioma Annika M. Bourgonje1, Kiek Verrijp2, Jan T. G. Schepens1, Anna C. Navis2, Jolanda A. F. Piepers1, Chantal B. C. Palmen1, Monique van den Eijnden4, Rob Hooft van Huijsduijnen4, Pieter Wesseling2,3, William P. J. Leenders2 and Wiljan J. A. J. Hendriks1* Abstract The infiltrative behavior of diffuse gliomas severely reduces therapeutic potential of surgical resection and radiotherapy, and urges for the identification of new drug-targets affecting glioma growth and migration. To address the potential role of protein tyrosine phosphatases (PTPs), we performed mRNA expression profiling for 91 of the 109 known human PTP genes on a series of clinical diffuse glioma samples of different grades and compared our findings with in silico knowledge from REMBRANDT and TCGA databases. Overall PTP family expression levels appeared independent of characteristic genetic aberrations associated with lower grade or high grade gliomas. Notably, seven PTP genes (DUSP26, MTMR4, PTEN, PTPRM, PTPRN2, PTPRT and PTPRZ1) were differentially expressed between grade II-III gliomas and (grade IV) glioblastomas. For DUSP26, PTEN, PTPRM and PTPRT, lower expression levels correlated with poor prognosis, and overexpression of DUSP26 or PTPRT in E98 glioblastoma cells reduced tumorigenicity. Our study represents the first in-depth analysis of PTP family expression in diffuse glioma subtypes and warrants further investigations into PTP-dependent signaling events as new entry points for improved therapy. Keywords: Glioblastoma, Astrocytoma, EGFR, Oligodendroglioma, IDH1, DUSP26, MTMR4, PTEN, PTP, PTPRM, PTPRN2, PTPRT, PTPRZ1, Malignancy Introduction has slightly improved over the past decades, the prospect Gliomas arise from glial (precursor) cells and represent with current treatment is only a median 15 months fol- the most frequent type of primary brain tumor.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Protein Phosphatases Cat. no. 330231 PAHS-045ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Protein Phosphatases RT² Profiler PCR Array profiles the gene expression of the 84 most important and well-studied phosphatases in the mammalian genome. By reversing the phosphorylation of key regulatory proteins mediated by protein kinases, phosphatases serve as a very important complement to kinases and attenuate activated signal transduction pathways. The gene classes on this array include both receptor and non-receptor tyrosine phosphatases, catalytic subunits of the three major protein phosphatase gene families, the dual specificity phosphatases, as well as cell cycle regulatory and other protein phosphatases.
    [Show full text]
  • Protein Tyrosine Phosphatase Sigma (Ptpσ) Targets Apical Junction Complex Proteins in the Intestine and Modulates
    Protein tyrosine phosphatase sigma (PTPσ) targets apical junction complex proteins in the intestine and modulates epithelial permeability. by Ryan Murchie A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Biochemistry University of Toronto © Copyright by Ryan Murchie 2013 Protein tyrosine phosphatase sigma (PTPσ) targets apical junction complex proteins in the intestine and modulates epithelial permeability. Ryan Murchie Master of Science Department of Biochemistry University of Toronto 2012 Abstract Protein tyrosine phosphatase sigma (PTPσ), encoded by PTPRS, was shown previously by us to contain SNP polymorphisms that can confer susceptibility to inflammatory bowel disease (IBD). PTPσ(-/-) mice exhibit an IBD-like phenotype and show increased susceptibility to acute models of murine colitis. The function of PTPσ in the intestine is uncharacterized. Here, I show an intestinal epithelial barrier defect in the PTPσ(-/-) mouse, demonstrated by a decrease in trans-epithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. We identified several putative PTPσ intestinal substrates; among these were several proteins that form and regulate the apical junction complex, including ezrin. My results show that ezrin binds to and undergoes tyrosine de-phosphorylation by PTPσ in vitro, suggesting it is a direct substrate for this PTP. The results suggest a role for PTPσ as a positive regulator of epithelial barrier integrity in the intestine. The proteins identified in the screen, including ezrin, suggest that PTPσ may modulate epithelial cell adhesion through the targeting of AJC-associated proteins, a process impaired in IBD. ii Acknowledgements First and foremost, I would like to thank my supervisors Dr.
    [Show full text]
  • Receptor Protein Tyrosine Phosphatases Control Purkinje Neuron Firing
    Receptor protein tyrosine phosphatases control Purkinje neuron firing Alexander S. Brown1, Pratap Meera2, Gabe Quinones1, Jessica Magri1, Thomas S. Otis3, Stefan M. Pulst4, and Anthony E. Oro1,5 1Program in Epithelial Biology Stanford University School of Medicine, Stanford CA, 2Department of Neurobiology University of California Los Angeles, Los Angeles CA 3Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom 4Department of Neurology, University of Utah Medical Center, Salt Lake City, UT 5To whom correspondence should be addressed: Anthony E.Oro ( [email protected]) . Abstract (173/200 words): Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegenerative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs)1. However, because of the lack of effective neuroactive, clinically available SFK inhibitors, alternative mechanisms to modulate SFK activity are needed. Previous studies demonstrate that SFK activity can be enhanced by the removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs)2,3. In this Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of a subset of the RPTP family members. RPTP activity normally results in SFK activation in vitro, and lowering RPTP activity in cerebellar slices using recently described RPTP peptide inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA models. Together these results identify RPTPs as novel effectors of cerebellar activity, extending the MTSS1/SFK regulatory circuit we previously described and expanding the therapeutic targets for SCA patients.
    [Show full text]
  • LAR Receptor Phospho-Tyrosine Phosphatases Regulate NMDA-Receptor Responses Alessandra Sclip*, Thomas C Su¨ Dhof
    RESEARCH ARTICLE LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses Alessandra Sclip*, Thomas C Su¨ dhof Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States Abstract LAR-type receptor phosphotyrosine-phosphatases (LAR-RPTPs) are presynaptic adhesion molecules that interact trans-synaptically with multitudinous postsynaptic adhesion molecules, including SliTrks, SALMs, and TrkC. Via these interactions, LAR-RPTPs are thought to function as synaptogenic wiring molecules that promote neural circuit formation by mediating the establishment of synapses. To test the synaptogenic functions of LAR-RPTPs, we conditionally deleted the genes encoding all three LAR-RPTPs, singly or in combination, in mice before synapse formation. Strikingly, deletion of LAR-RPTPs had no effect on synaptic connectivity in cultured neurons or in vivo, but impaired NMDA-receptor-mediated responses. Deletion of LAR-RPTPs decreased NMDA-receptor-mediated responses by a trans-synaptic mechanism. In cultured neurons, deletion of all LAR-RPTPs led to a reduction in synaptic NMDA-receptor EPSCs, without changing the subunit composition or the protein levels of NMDA-receptors. In vivo, deletion of all LAR-RPTPs in the hippocampus at birth also did not alter synaptic connectivity as measured via AMPA-receptor-mediated synaptic responses at Schaffer-collateral synapses monitored in juvenile mice, but again decreased NMDA-receptor mediated synaptic transmission. Thus, LAR-RPTPs are not essential for synapse formation, but control synapse properties by regulating postsynaptic NMDA-receptors via a trans-synaptic mechanism that likely involves binding to one or multiple postsynaptic ligands. *For correspondence: [email protected] Competing interests: The Introduction authors declare that no In the brain, neurons wire to form distinct neural circuits that are important for processing informa- competing interests exist.
    [Show full text]
  • DDIAS Promotes STAT3 Activation by Preventing STAT3 Recruitment To
    Im et al. Oncogenesis (2020)9:1 https://doi.org/10.1038/s41389-019-0187-2 Oncogenesis ARTICLE Open Access DDIAS promotes STAT3 activation by preventing STAT3 recruitment to PTPRM in lung cancer cells Joo-Young Im 1,Bo-KyungKim 1,Kang-WooLee2, So-Young Chun1, Mi-Jung Kang1 and Misun Won1,3 Abstract DNA damage-induced apoptosis suppressor (DDIAS) regulates cancer cell survival. Here we investigated the involvement of DDIAS in IL-6–mediated signaling to understand the mechanism underlying the role of DDIAS in lung cancer malignancy. We showed that DDIAS promotes tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3), which is constitutively activated in malignant cancers. Interestingly, siRNA protein tyrosine phosphatase (PTP) library screening revealed protein tyrosine phosphatase receptor mu (PTPRM) as a novel STAT3 PTP. PTPRM knockdown rescued the DDIAS-knockdown-mediated decrease in STAT3 Y705 phosphorylation in the presence of IL-6. However, PTPRM overexpression decreased STAT3 Y705 phosphorylation. Moreover, endogenous PTPRM interacted with endogenous STAT3 for dephosphorylation at Y705 following IL-6 treatment. As expected, PTPRM bound to wild-type STAT3 but not the STAT3 Y705F mutant. PTPRM dephosphorylated STAT3 in the absence of DDIAS, suggesting that DDIAS hampers PTPRM/STAT3 interaction. In fact, DDIAS bound to the STAT3 transactivation domain (TAD), which competes with PTPRM to recruit STAT3 for dephosphorylation. Thus we show that DDIAS prevents PTPRM/STAT3 binding and blocks STAT3 Y705 dephosphorylation, thereby sustaining STAT3 activation in lung cancer. DDIAS expression strongly correlates with STAT3 phosphorylation in human lung cancer cell lines and tissues. Thus DDIAS may be considered as a potential biomarker and therapeutic target in malignant lung cancer cells with aberrant STAT3 activation.
    [Show full text]
  • The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma
    cancers Review The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma Yide Huang 1,2, Yafei Zhang 1, Lilin Ge 2,3, Yao Lin 1,* ID and Hang Fai Kwok 2,* ID 1 Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; [email protected] (Y.H.); [email protected] (Y.Z.) 2 Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China; [email protected] 3 Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China * Correspondence: [email protected] (Y.L.); [email protected] (H.F.K.) Received: 8 January 2018; Accepted: 15 March 2018; Published: 20 March 2018 Abstract: The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC. Keywords: protein-tyrosine phosphatase inhibitors; hepatocellular carcinoma; signaling pathways; therapeutic targets 1.
    [Show full text]