Modeling and Thermal Optimization of Residential Buildings Using BIM and Based on RTS Method: Application to Traditional and Standard House in Sousse City
Total Page:16
File Type:pdf, Size:1020Kb
Modeling and thermal optimization of residential buildings using BIM and based on RTS method: application to traditional and standard house in Sousse city Habiba GHEDAS, born BENZARTI ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX ( http://www.tdx.cat/) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX.No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons (http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. WARNING On having consulted this thesis you’re accepting the following use conditions: Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor availability from a site foreign to the UPCommons service. Introducing its content in a window or frame foreign to the UPCommons service is not authorized (framing). These rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. Institution de la Recherche et de Escola Tecnica UNIVERSITAT UNIVERSITE DE Isa Chott- l’Enseignement Superior de POLITECNICA DE SOUSSE Meriem Supérieur Barcelone CATALUNYA Agricoles CO-TUTORING DOCTORAL THESIS MODELING AND THERMAL OPTIMIZATION OF RESIDENTIAL BUILDINGS USING BIM AND BASED ON RTS METHOD: APPLICATION TO TRADITIONAL AND STANDARD HOUSE IN SOUSSE CITY" Mme Habiba GHEDAS born BENZARTI A dissertation submitted in fulfillment of the requirements for the degree of Doctor of Visual Communication in Architecture and Design in ETSAB (Spain) and Landscape, Territory and Patrimony in ISA Chott-Mariem (Tunisia) Supervised by: Pr Abdelmajid JEMNI, Tunisia. Dr Eloi Coloma PICO, Spain. Abstract The thermal quality of the contemporary building tends to be deteriorated due to aesthetic and economic considerations. Cheap materials which are thermally inappropriate are still rising in new buildings. Actually, the architectural design has been changed. Hence, the orientation is poorly investigated. The interior height of the new buildings is defectively compared to those of traditional houses. In addition, the patio is replaced by a corridor and different parts have already become communicating. Accordingly, the heating and cooling space becomes more and more important. The traditional dwelling, in fact, has a bioclimatic architecture which allows to provide naturally minimal comfort. In our work, we tend to exploit the REVIT software in the residential building simulation in Tunisia and to optimize the modern housing model. Following the REVIT validation of the obtained results and comparing them to TRNSYS and SPREADSHEET ASHRAE, we have already relied on them to assess both housing models (contemporary and traditional). Using REVIT, the evaluation results show that traditional housing are more efficient than contemporary ones particularly during summer period. Then, we optimize the modern models making use of the passive strategies of traditional bioclimatic architecture and the improvement measures in the previous investigations. Numerous tests have been generated applying REVIT software in order to determine various models of contemporary housing which are able to be integrated into the Mediterranean climate. In fact, these tests indicate that REVIT efficiency is based on RTS method in thermal simulation of residential buildings Keywords: REVIT, Radiant Time Series, Thermal comfort, Heating and cooling loads, Building Information(data) Modeling, Improvement measurement, Bioclimatic design strategies Contents Abstract ___________________________________________________________________ 2 Abbreviation _______________________________________________________________ 6 Figures ____________________________________________________________________ 9 Tables ___________________________________________________________________ 12 Preface __________________________________________________________________ 14 Chapter I : Thermal Building Study (International and national) ___________________ 17 I.1 Literature review of thermal Building based on BIM: _____________________________ 18 I.2 Literature review of a non -based BIM thermal Building: __________________________ 20 I.2.1 Variation in Skylight system and comfort condition ___________________________________ 21 I.2.2 Variation in Trombe wall system __________________________________________________ 22 I.2.3 Variation in slab inertia __________________________________________________________ 23 I.2.4 Variation in roof insulation and wall thickness _______________________________________ 23 I.2.5 Variation in percentage of glass surfaces relative to the south facade and the impact of shading system in this face. ____________________________________________________________________ 23 I.2.6 Variation in building orientation___________________________________________________ 27 I.2.7 Form variation of (simple, complex) ________________________________________________ 27 I.2.8 Ventilation variation ____________________________________________________________ 27 I.3 Analysis and calculation types _______________________________________________ 27 I.3.1 Conceptual Energy Analysis: ______________________________________________________ 28 I.3.2 Dynamic Thermal Simulation (DTS): ________________________________________________ 28 I.3.3 Steady State Thermal Simulation (SSTS): ____________________________________________ 28 I.3.4 Regulatory calculation: __________________________________________________________ 28 I.4 Heating and cooling load calculation method: ___________________________________ 28 I.4.1 History _______________________________________________________________________ 28 I.4.2 Generality: ____________________________________________________________________ 29 I.4.3 The method of Heat Balance calculation: ___________________________________________ 29 I.4.4 Radiant Time Series (RTS) calculation method: _______________________________________ 32 I.4.5 Energy estimation ______________________________________________________________ 40 I.5 Conclusion: _______________________________________________________________ 42 Chapter II : Methodology and simulation tools _________________________________ 43 II.1 Introduction: ___________________________________________________________ 44 II.2 Methodology: __________________________________________________________ 44 II.2.1 Unconditioned lodgment: ________________________________________________________ 45 II.2.2 Conditioned lodgment __________________________________________________________ 45 II.2.3 Lodgment types ________________________________________________________________ 47 II.2.4 Climatic parameter _____________________________________________________________ 47 II.3 Tools __________________________________________________________________ 48 II.3.1 : Tool for climate analysis ________________________________________________________ 48 II.3.2 Tool for thermal efficiency assessment: _____________________________________________ 49 II.3.3 Tool for load calculation: ________________________________________________________ 49 II.3.4 Tools available in Revit __________________________________________________________ 50 II.3.5 Conceptual Mass Mode and Building Elements Mode _________________________________ 52 II.3.6 Heating and cooling load calculation _______________________________________________ 53 II.4 Conclusion: ____________________________________________________________ 53 Chapter III : Checking REVIT performances in heating and cooling load calculation of a local using RTS method _____________________________________________________ 54 III.1 Adopted approach for validation: ________________________________________ 55 III.2 Description of reference model: _________________________________________ 55 III.2.1 Partitions