The Ratio of FOXP3+ Regulatory T Cells to Granzyme B+ Cytotoxic T

Total Page:16

File Type:pdf, Size:1020Kb

The Ratio of FOXP3+ Regulatory T Cells to Granzyme B+ Cytotoxic T Hematopathology / FOXP3+ T CELL–GRANZYME B+ T/NK CELL RATIO The Ratio of FOXP3+ Regulatory T Cells to Granzyme B+ Cytotoxic T/NK Cells Predicts Prognosis in Classical Hodgkin Lymphoma and Is Independent of bcl-2 and MAL Expression Todd W. Kelley, MD,1 Brad Pohlman, MD,2 Paul Elson, ScD,3 and Eric D. Hsi, MD1 Key Words: FOXP3; Regulatory T-cells; Granzyme B; Cytotoxic T/NK cells; Hodgkin lymphoma; bcl-2; MAL Downloaded from https://academic.oup.com/ajcp/article/128/6/958/1765062 by guest on 30 September 2021 DOI: 10.1309/NB3947K383DJ0LQ2 Abstract Classical Hodgkin lymphoma (cHL), a neoplasm of ger- We studied the prognostic importance of tumor- minal center B-cell derivation,1 accounts for approximately infiltrating regulatory T lymphocytes (Tregs) and 10% of all lymphomas. Hodgkin–Reed-Sternberg (HRS) cells, cytotoxic T/NK lymphocytes (CTLs) in 98 diagnostic the neoplastic component of cHL, usually constitute less than biopsy specimens from patients with classical Hodgkin 1% of the cellularity of the tumor. The majority of the cells in lymphoma (cHL). Immunohistochemical analysis was the tumor are reactive and consist predominantly of T cells performed for FOXP3 to identify Tregs and for with variable numbers of other inflammatory cells, such as granzyme B (GrB) to identify activated CTLs. Failure- macrophages, neutrophils, eosinophils, and plasma cells. free survival (FFS) and overall survival (OS) were Clinically, cHL has a favorable prognosis with overall survival clinical end points. Patients with fewer than 25 of approximately 80% among all patients using modern thera- FOXP3+ cells per high-power field (HPF) had a mean py. Because of this success and the young age of most patients, ± SD 5-year FFS of 64% ± 7% vs 85% ± 5% for recent efforts have been aimed at reducing therapy to avoid late patients with 25 or more FOXP3+ cells/HPF (P = .05). complications. However, a significant minority of patients will A FOXP3/GrB ratio of 1 or less was associated with have a progressive or relapsing clinical course despite aggres- poor FFS (46% ± 10% vs 86% ± 4%; P < .001) and sive treatment and eventually die of the lymphoma. OS (67% ± 10% vs 93% ± 3%; P < .001). When prior Prognostic scoring systems such as the international prog- available MAL and bcl-2 expression data were included nostic score (IPS) have been developed. The IPS risk stratifies in a multivariate analysis of all clinical and biologic patients according to 7 high-risk features, including hypoalbu- factors, a FOXP3/GrB ratio of 1 or less and tumor cell minemia, anemia, leukocytosis, lymphopenia, stage IV, male expression of MAL and bcl-2 all independently predicted sex, and age of 45 years or older.2 Biologic markers may give poor FFS. This demonstrates the importance of evaluating additional information that results in improved patient risk strat- tumor cell markers and the tumor immune infiltrate ification, and several have recently been identified. For example, when considering biologic prognostic markers in cHL. features of the HRS cells, such as bcl-2 or MAL expression, have been shown to be independent indicators of a poor prognosis.3-5 Characteristics of the nonneoplastic immune cell infil- trate within the lymphoma tumor bed may also be prognosti- cally important. The nature of the infiltrate may be influenced by various cytokines or chemokines elaborated by the tumor cells6-8 and by latent Epstein-Barr virus (EBV) infection.9 In particular, characteristics of the background immune response have been shown to be important in follicular lymphoma.10 Indeed, gene expression profiling studies of cHL also suggest that genes related to the tumor microenvironment are important 958 Am J Clin Pathol 2007;128:958-965 © American Society for Clinical Pathology 958 DOI: 10.1309/NB3947K383DJ0LQ2 Hematopathology / ORIGINAL ARTICLE in predicting prognosis.11 Interest has grown in the role of reg- Paraffin-embedded tissue blocks, obtained at the time of the ulatory T cells (Tregs) in tumor immunity. They have been initial diagnostic procedure, were retrieved from the archives shown to be important modulators of the immune response in of the Division of Pathology and Laboratory Medicine, the setting of transplantation,12-15 autoimmune disease,16 Cleveland Clinic, Cleveland, OH. TMAs were constructed infection,17,18 and neoplasia.19 using two to four 1.0-mm cores per case. In this study, we sought to evaluate the T/NK-cell subset Immunohistochemical staining was performed using anti- composition of cHL cases from our institution. Specifically, bodies to FOXP3 (clone 22510, Abcam, Cambridge, England) we correlated the number of intratumoral Tregs (as deter- to identify regulatory T cells and GrB (clone GrB-7, Accurate mined by FOXP3 expression) and the number of activated Chemical, Westbury, NY) to identify activated CTLs. Staining granzyme B (GrB)+ cytotoxic T/NK lymphocytes (CTLs) was performed using a Ventana Discovery automated with clinical factors and outcome. Furthermore, we also eval- immunostaining system (Ventana, Tucson, AZ). Data were Downloaded from https://academic.oup.com/ajcp/article/128/6/958/1765062 by guest on 30 September 2021 uated the ratio of tumor infiltrating FOXP3+ cells to GrB+ obtained by counting 5 separate 1,000× high-power fields cells (FOXP3/GrB ratio) in predicting survival. (HPFs) and calculating the mean number of positively stain- ing cells per HPF. Counts were performed using an Olympus CX31 microscope (Olympus America, Center Valley, PA). Materials and Methods Hypocellular, fibrous bands associated with the nodular scle- rosis subtype were avoided. Appropriate positive and negative Case Selection control stains were generated and evaluated. We identified 98 consecutive cases with paraffin-embedded For quality control purposes and to evaluate interobserv- archival tissue from the initial diagnostic procedure and adequate er reproducibility, 11 (11%) of 98 cases were recounted by a clinical follow-up for inclusion in this study. HIV+ cases were second observer. A comparison of the 2 data sets showed excluded. All patients were initially treated with curative intent excellent reproducibility (FOXP3, Spearman correlation coef- according to the standard of care at the time of diagnosis. ficient, 0.93; P < .001; GrB, Spearman correlation coefficient, However, owing to the long study period (between January 1988 0.94; P < .001). The FOXP3/GrB ratio change did not change and December 2002), standards of care changed, and, conse- significantly in any of the recounted cases. TMAs were qual- quently, the study patients did not receive uniform treatment. The itatively evaluated (positive or negative) for MAL and bcl-2 general treatment regimens were as follows: patients with early- immunoreactivity in HRS cells as described previously.3,5 stage disease received radiation therapy (RT) alone or combina- tion chemotherapy that may have also included RT. Patients with Statistical Analysis advanced-stage disease received combination chemotherapy with OS was defined as the period from initial diagnosis to or without RT. Patients in whom treatment failed after primary death of any cause. FFS was defined as time from initial diag- RT received combination chemotherapy. Patients who experi- nosis to progression of cHL or death of any cause. OS and enced treatment failure after initial chemotherapy received sal- FFS were summarized by using the method of Kaplan and vage chemotherapy and may have also received high-dose thera- Meier. The Wilcoxon rank sum test was used to evaluate asso- py with autologous stem-cell transplantation. These cases have ciations between intratumoral FOXP3+ cells or GrB+ cells been reported in earlier unrelated studies.3 and clinical factors (ie, sex, age, stage, IPS, presence of bulky The medical records were reviewed for clinical character- disease, and histologic subtype). The generalized Wilcoxon istics, including sex, age, stage, IPS, presence of bulky disease, rank sum was used to evaluate outcome. The Cox proportion- presence of B symptoms, number of involved sites, disease al hazards model, with stepwise variable selection, was used progression, and survival. Histologic features were reviewed; to simultaneously assess multiple factors. Significance was set all cases were diagnosed as classical Hodgkin lymphoma at a P value of .05 or less for univariate and multivariate analy- according to the World Health Organization classification ses. The association between the number of intratumoral scheme.20 Histologic subtype (nodular sclerosis, mixed cellu- FOXP3+ cells and GrB+ cells was evaluated using the larity, lymphocyte-rich, lymphocyte-depleted) was noted. Spearman rank correlation coefficient. For convenience, the Survival analysis was performed using failure-free survival numbers of intratumoral FOXP3+ cells and GrB+ cells were (FFS) and overall survival (OS) as clinical end points. dichotomized in the OS and FFS analyses using cut points derived from a recursive partitioning algorithm that identified Immunohistochemical Analysis an optimal FOXP3 cut point of 25 positive cells per HPF. The Tissue microarrays (TMAs) have been shown to be a power- optimal GrB cut point was 7.5 positive cells per HPF. In addi- ful tool for the evaluation of large numbers of samples under iden- tion to evaluating the impact of the absolute number of tical immunohistochemical staining conditions with excellent cor- FOXP3+ and GrB+ cells present, the impact of their relative relation with whole tissue sections, including in lymphoma.21 presence was also assessed. Again using recursive partitioning, © American Society for Clinical Pathology Am J Clin Pathol 2007;128:958-965 959 959 DOI: 10.1309/NB3947K383DJ0LQ2 959 Kelley et al / FOXP3+ T CELL–GRANZYME B+ T/NK CELL RATIO a FOXP3/GrB ratio of 0.85 was identified as an optimal cut to be 76% ± 4% and 86% ± 4%, respectively. Of 98 patients, point; however, for convenience, this was rounded to 1.0. 70 (71%) remained alive and free of progression at a median of 8.6 years (range, 11 months to 19.9 years). A shorter FFS was associated with an age of 45 years or older (P = .05) and an IPS Results of more than 2 (P = .05).
Recommended publications
  • Antibody-Dependent Cellular Cytotoxicity Riiia and Mediate Γ
    Effector Memory αβ T Lymphocytes Can Express Fc γRIIIa and Mediate Antibody-Dependent Cellular Cytotoxicity This information is current as Béatrice Clémenceau, Régine Vivien, Mathilde Berthomé, of September 27, 2021. Nelly Robillard, Richard Garand, Géraldine Gallot, Solène Vollant and Henri Vié J Immunol 2008; 180:5327-5334; ; doi: 10.4049/jimmunol.180.8.5327 http://www.jimmunol.org/content/180/8/5327 Downloaded from References This article cites 43 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/180/8/5327.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Effector Memory ␣␤ T Lymphocytes Can Express Fc␥RIIIa and Mediate Antibody-Dependent Cellular Cytotoxicity1 Be´atrice Cle´menceau,*† Re´gine Vivien,*† Mathilde Berthome´,*† Nelly Robillard,‡ Richard Garand,‡ Ge´raldine Gallot,*† Sole`ne Vollant,*† and Henri Vie´2*† Human memory T cells are comprised of distinct populations with different homing potential and effector functions: central memory T cells that mount recall responses to Ags in secondary lymphoid organs, and effector memory T cells that confer immediate protection in peripheral tissues.
    [Show full text]
  • A Novel CD4+ CTL Subtype Characterized by Chemotaxis and Inflammation Is Involved in the Pathogenesis of Graves’ Orbitopa
    Cellular & Molecular Immunology www.nature.com/cmi ARTICLE OPEN A novel CD4+ CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of Graves’ orbitopathy Yue Wang1,2,3,4, Ziyi Chen 1, Tingjie Wang1,2, Hui Guo1, Yufeng Liu2,3,5, Ningxin Dang3, Shiqian Hu1, Liping Wu1, Chengsheng Zhang4,6,KaiYe2,3,7 and Bingyin Shi1 Graves’ orbitopathy (GO), the most severe manifestation of Graves’ hyperthyroidism (GH), is an autoimmune-mediated inflammatory disorder, and treatments often exhibit a low efficacy. CD4+ T cells have been reported to play vital roles in GO progression. To explore the pathogenic CD4+ T cell types that drive GO progression, we applied single-cell RNA sequencing (scRNA-Seq), T cell receptor sequencing (TCR-Seq), flow cytometry, immunofluorescence and mixed lymphocyte reaction (MLR) assays to evaluate CD4+ T cells from GO and GH patients. scRNA-Seq revealed the novel GO-specific cell type CD4+ cytotoxic T lymphocytes (CTLs), which are characterized by chemotactic and inflammatory features. The clonal expansion of this CD4+ CTL population, as demonstrated by TCR-Seq, along with their strong cytotoxic response to autoantigens, localization in orbital sites, and potential relationship with disease relapse provide strong evidence for the pathogenic roles of GZMB and IFN-γ-secreting CD4+ CTLs in GO. Therefore, cytotoxic pathways may become potential therapeutic targets for GO. 1234567890();,: Keywords: Graves’ orbitopathy; single-cell RNA sequencing; CD4+ cytotoxic T lymphocytes Cellular & Molecular Immunology
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • Late Stages of T Cell Maturation in the Thymus
    ARTICLES Late stages of T cell maturation in the thymus involve NF-B and tonic type I interferon signaling Yan Xing, Xiaodan Wang, Stephen C Jameson & Kristin A Hogquist Positive selection occurs in the thymic cortex, but critical maturation events occur later in the medulla. Here we defined the precise stage at which T cells acquired competence to proliferate and emigrate. Transcriptome analysis of late gene changes suggested roles for the transcription factor NF-B and interferon signaling. Mice lacking the inhibitor of NF-B (IB) kinase (IKK) kinase TAK1 underwent normal positive selection but exhibited a specific block in functional maturation. NF-B signaling provided protection from death mediated by the cytokine TNF and was required for proliferation and emigration. The interferon signature was independent of NF-B; however, thymocytes deficient in the interferon- (IFN-) receptor IFN-R showed reduced expression of the transcription factor STAT1 and phenotypic abnormality but were able to proliferate. Thus, both NF-B and tonic interferon signals are involved in the final maturation of thymocytes into naive T cells. T cell development occurs in the thymus, which provides a unique reside predominantly in the medulla; however, not all SP thymocytes microenvironment and presents ligands consisting of self peptide and are equivalent. major histocompatibility complex (MHC) molecules to T cell anti- CD24hiQa2lo SP thymocytes have been defined as ‘semi-mature’ gen receptors (TCRs). In the cortex of the thymus, low-affinity TCR and have been shown to be susceptible to apoptosis when triggered interactions initiate positive selection signals in CD4+CD8+ double- through the TCR6.
    [Show full text]
  • CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells with an Increased Cytotoxic Potential
    + CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells.
    [Show full text]
  • Download Helper and Cytotoxic T Cells.Pdf
    Category: Cells Helper and Cytotoxic T cells Original author: Tracy Hussell, University of Manchester, UK UpdatedMelissa Bedard, by: Hannah MRC Jeffery,Human Immunology University of Unit, Birmingham University of Oxford T cells are so called because they are predominantly produced in the thymus. They recognise foreign particles (antigen) by a surface expressed, highly variable, T cell receptor (TCR). There are two major types of T cells: the helper T cell and the cytotoxic T cell. As the names suggest helper T cells ‘help’ other cells of the immune system, whilst cytotoxic T cells kill virally infected cells and tumours. Unlike antibody, the TCR cannot bind antigen directly. Instead it needs to have broken-down peptides of the antigen ‘presented’ to it by an antigen presenting cell (APC). The molecules on the APC that present the antigen are called major histocompatibility complexes (MHC). There are two types of MHC: MHC class I and MHC class II. MHC class I presents to cytotoxic T cells; MHC class II presents to helper T cells. The binding of the TCR to the MHC molecule containing the antigen peptide is a little unstable and so co-receptors are required. The CD4 co-receptor (left image, below) is expressed by helper T cells and the CD8 co-receptor (right image, below) by cytotoxic T cells. Although most T cells express either CD4 or CD8, some express both and proportion do not express either (“double negative” (DN)). Most T cells are defined as CD4 or CD8 but some are classified into additional types such as invariant Natural Killer T cells (iNKT), and Mucosal Associated Invariant T cells (MAIT) The TCR is made up of multiple chains to assist the transmission of the signal to the T cell.
    [Show full text]
  • Cross-Tissue Immune Cell Analysis Reveals Tissue-Specific Adaptations and Clonal Architecture 2 Across the Human Body
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441762; this version posted April 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture 2 across the human body 3 Authors: 4 Domínguez Conde C1, *, Gomes T 1,*, Jarvis LB2, *, Xu C 1,*, Howlett SK 2, Rainbow DB 2, Suchanek O3 , 5 King HW 4, Mamanova L 1, Polanski K 1, Huang N1 , Fasouli E 1, Mahbubani KT 5, Prete M 1, Campos L 1,6, 6 Mousa HS 2, Needham EJ 2, Pritchard S 1,, Li T 1,, Elmentaite R 1,, Park J 1,, Menon DK 7, Bayraktar OA 1, 7 James LK 4, Meyer KB 1,, Clatworthy MR 1,3, Saeb-Parsy K 5,#, Jones JL 2, #, Teichmann SA 1,8, # 8 Affiliations: 9 1. Wellcome Sanger Institute, Cambridge, UK 10 2. Department of Clinical Neurosciences, University of Cambridge 11 3. Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK 12 4. Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK 13 5. Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research 14 Centre, Cambridge, UK 15 6. West Suffolk Hospital NHS Trust, Bury Saint Edmunds, UK 16 7. Department of Anaesthesia, University of Cambridge, Cambridge, UK 17 8. Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of 18 Cambridge, Cambridge, UK 19 *Co-first authors 20 #Corresponding authors 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.28.441762; this version posted April 28, 2021.
    [Show full text]
  • Peptide-Induced Positive Selection of TCR Transgenic Thymocytes in a Coreceptor-Independent Manner
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity, Vol. 6, 643±653, May, 1997, Copyright 1997 by Cell Press Peptide-Induced Positive Selection of TCR Transgenic Thymocytes in a Coreceptor-Independent Manner Eric Sebzda,* Mabel Choi,* Wai Ping Fung-Leung,² of the TCR and coreceptor to an MHC molecule conveys Tak W. Mak,*³ and Pamela S. Ohashi* lck to other kinases associated with the TCR complex, *Ontario Cancer Institute ultimately leading to downstream signaling. However, Departments of Medical Biophysics TCR transgenic mice expressing mutant CD8 molecules and Immunology that are unable to associate with lck are still able to Toronto, Ontario M5G 2M9 undergo thymocyte selection (Chan et al., 1993), sug- Canada gesting that CD8±lck interactions are not essential for ² R. W. Johnson Pharmaceutical T cell maturation. Similar results were obtained using Research Institute mutant CD4 molecules (Killeen and Littman, 1993). Addi- 3535 General Atomics Ct. tional experiments using TCR transgenic mice lacking San Diego, California 92121 the CD8a cytoplasmic domain have shown a defect in ³ Amgen Institute MHC class I±restricted positive selection, suggesting 620 University Ave. that an intracellular portion of CD8a is involved in thymo- Toronto, Ontario M5G 2C1 cyte development (Fung-Leung et al., 1993). Recent Canada work has also implicated the CD8b chain in signaling during T cell maturation (Crooks and Littman, 1994; Fung-Leung et al., 1994; Itano et al., 1994a; Nakayama Summary et al., 1994). Therefore, the exact function of CD8 during thymocyte selection remains unresolved. In addition to T cell receptor (TCR) transgenic thymocytes specific a potential role in signaling, experiments have demon- for the LCMV gp peptide are normally positively se- strated that coreceptors contribute to thymocyte± lected to the CD8 lineage.
    [Show full text]
  • T Cells by Regulatory T Cells + CD8 Differential Suppression of Tumor
    Differential Suppression of Tumor-Specific CD8 + T Cells by Regulatory T Cells Edward James, Alex Yeh, Cathy King, Firouzeh Korangy, Ian Bailey, Denise S. Boulanger, Benoît J. Van den Eynde, This information is current as Nicholas Murray and Tim J. Elliott of October 2, 2021. J Immunol 2010; 185:5048-5055; Prepublished online 4 October 2010; doi: 10.4049/jimmunol.1000134 http://www.jimmunol.org/content/185/9/5048 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/10/04/jimmunol.100013 Material 4.DC1 References This article cites 42 articles, 19 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/185/9/5048.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Suppression of Tumor-Specific CD8+ T Cells by Regulatory T Cells Edward James,* Alex Yeh,*,1 Cathy King,* Firouzeh Korangy,† Ian Bailey,* Denise S.
    [Show full text]
  • Specific Cytotoxic T Cells Eliminate Cells Producing Neutralizing
    LETTERS TO NATURE Specific cytotoxic T cells a eliminate cells producing neutralizing antibodies 0 oi Oliver Planz, Peter Seiler, Hans Hengartner g b & Rolf M. Zinkernagel E ai Institute for Experimental Immunology, Department of Pathology, C. University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland :;::;i "'2 IN medically important infections with cytopathic viruses, neu­ > tralizing antibodies are generated within 6-14 days. In contrast, such protective antibodies appear late (50-150 days) after infec­ tion with immunodeficiency virus (HIV) and hepatitis B virus (HBV) in humans, or lymphocytic choriomeningitis virus 2 (LCMV) in mice1-6. However, during these infections, non­ <1.7-ce.--r---+---+-,i,-c'-"9--+------+-- neutralizing antibodies appear much earlier2·6•7• It has been o 5 101520 40 60 80 proposed that T cells suppress antibody responses generally Time (days) and against viruses in vitro 6·S-10• Here we show that the suppres­ sion of neutralizing-antibody responses in LCMV infections in FIG. 1 Kinetics of neutralizing and non-neutralizing antibody responses to mice is due to selective infection of neutralizing-antibody­ LCMV. a, BALB/c mice were infected i.v. with 102 PFU of LCMV-WE. Virus producing B cells by this non-cytopathic virus, and their sub­ titre ( •) in the blood of these mice is usually not detectable. Nucleoprotein­ sequent destruction by virus-specific cytotoxic T cells. Such specitic antibodies (A) appear between days 6 and 8 after infection and stay specific B-cell elimination that leads to a delay in neutralizing­ at a constant level during the whole observation period; the cross in antibody production could help to establish persistent virus parentheses indicates that only 20% of BALB/c mice infected with infections by non-cytopathic viruses.
    [Show full text]
  • CD8 T Cell Differentiation During Immune Responses Sara Sofia De Campos Pereira Lemos
    CD8 T cell differentiation during immune responses Sara Sofia de Campos Pereira Lemos To cite this version: Sara Sofia de Campos Pereira Lemos. CD8 T cell differentiation during immune responses. Immunol- ogy. Université René Descartes - Paris V, 2014. English. NNT : 2014PA05T009. tel-01059806 HAL Id: tel-01059806 https://tel.archives-ouvertes.fr/tel-01059806 Submitted on 2 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS DESCARTES FACULTÉ DE MEDECINE-site Necker INSERM U1020 (ex U591) _______________________________________________________________________ THÈSE Pour obtenir le grade de DOCTEUR Sciences de la Vie et de la Santé Discipline: Immunologie École Doctoral: Gc2iD Présentée et soutenue publiquement par Sara Sofia de Campos Pereira Lemos Le 23 Mai 2014 CD8 T cell differentiation during immune responses Jury: Dr. Jacqueline MARVEL Rapporteur Dr. Sylvie GUERDER Rapporteur Dr. Jérôme DELON Examinateur Dr. Nicolas BLANCHARD Examinateur Dr. Benedita ROCHA Directeur de these 1 To a wonderful person, an extraordinary woman and an amazing mother... my mother, Arlete Pereira “The first precept was never to accept a thing as true until I knew it as such without a single doubt.” René Descartes (French philosopher and scientist) “We live where no one knows the answer and the struggle is to figure out the question” Joshua Schimel (in “Writing Science” book).
    [Show full text]
  • Cytotoxic CD8+ T Cells in Cancer and Cancer Immunotherapy
    www.nature.com/bjc REVIEW ARTICLE Cytotoxic CD8+ T cells in cancer and cancer immunotherapy Hans Raskov 1, Adile Orhan1,2, Jan Pravsgaard Christensen3 and Ismail Gögenur1,4 The functions of, and interactions between, the innate and adaptive immune systems are vital for anticancer immunity. Cytotoxic T cells expressing cell-surface CD8 are the most powerful effectors in the anticancer immune response and form the backbone of current successful cancer immunotherapies. Immune-checkpoint inhibitors are designed to target immune-inhibitory receptors that function to regulate the immune response, whereas adoptive cell-transfer therapies use CD8+ T cells with genetically modified receptors—chimaeric antigen receptors—to specify and enhance CD8+ T-cell functionality. New generations of cytotoxic T cells with genetically modified or synthetic receptors are being developed and evaluated in clinical trials. Furthermore, combinatory regimens might optimise treatment effects and reduce adverse events. This review summarises advances in research on the most prominent immune effectors in cancer and cancer immunotherapy, cytotoxic T cells, and discusses possible implications for future cancer treatment. British Journal of Cancer (2021) 124:359–367; https://doi.org/10.1038/s41416-020-01048-4 BACKGROUND CD8+ T CELLS The natural immune response relies on the interaction of adaptive T lymphocytes effectively navigate and scan almost all parts of the and innate immunity systems and the synergy between them. The body for unwanted or foreign material; accordingly, naive and essential aspects of this response in terms of anticancer immunity effector T cells are highly skilled migrators central to immune are the surveillance, detection and destruction of neoplastic cells.
    [Show full text]