How to Measure Carbon Dioxide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Sanitization: Concentration, Temperature, and Exposure TimeSanitization: Concentration, Temperature, and Exposure Time Did you know? According to the CDC, contaminated equipment is one of the top five risk factors that contribute to foodborne illnesses. Food contact surfaces in your establishment must be cleaned and sanitized. This can be done either by heating an object to a high enough temperature to kill harmful micro-organisms or it can be treated with a chemical sanitizing compound. 1. Heat Sanitization: Allowing a food contact surface to be exposed to high heat for a designated period of time will sanitize the surface. An acceptable method of hot water sanitizing is by utilizing the three compartment sink. The final step of the wash, rinse, and sanitizing procedure is immersion of the object in water with a temperature of at least 170°F for no less than 30 seconds. The most common method of hot water sanitizing takes place in the final rinse cycle of dishwashing machines. Water temperature must be at least 180°F, but not greater than 200°F. At temperatures greater than 200°F, water vaporizes into steam before sanitization can occur. It is important to note that the surface temperature of the object being sanitized must be at 160°F for a long enough time to kill the bacteria. 2. Chemical Sanitization: Sanitizing is also achieved through the use of chemical compounds capable of destroying disease causing bacteria. Common sanitizers are chlorine (bleach), iodine, and quaternary ammonium. Chemical sanitizers have found widespread acceptance in the food service industry. These compounds are regulated by the U.S. Environmental Protection Agency and consequently require labeling with the word “Sanitizer.” The labeling should also include what concentration to use, data on minimum effective uses and warnings of possible health hazards.
- 
												  Model AIR 2000 Carbon Dioxide Sensors Consist of a Patented Solid State Infrared CO2 Monitor Housed in an Attractive Plastic CaseCARBON DIOXIDE (CO2 ) MODEL AIR2000/ INDOOR AIR QUALITY SENSOR (TOXCO2/ANA) GENERAL DESCRIPTION: Toxalert’s AIR 2000 Carbon Dioxide (CO2) sensors come with a linearized signal output capability of 0 to 10 VDC and 4 to 20 mA over its 0-2000ppm range (other ranges available). It has an accuracy of ± 5% of reading and a repeatability of ± 20ppm. Options available with the Air 2000 are a digital dis- play for reading CO2 concentration in ppm; relay output with field adjustable set point; and duct mounting hardware. The AIR 2000 may input directly to a Toxalert controller, interface directly to any standard direct digital controller (DDC); or be a stand-alone unit for the control of ventilation equipment. SENSING ELEMENT: Model AIR 2000 Carbon Dioxide sensors consist of a patented solid state infrared CO2 monitor housed in an attractive plastic case. The AIR 2000 has a new state-of-the-art lithium tantalite detector, updated digital electronics and unique auto-zero function. This results in very stable calibration and longer trouble-free operation in the field. The new IR source is more rugged, operated at 10X derated power and has life expectancy of 10 yrs. The new lithium tantalite detector enhances stability, has less ambient temperature sensitivity, and faster response AIR2000 SENSOR time. The AIR 2000 space sensor has louvers to allow free passage of air to the sensing cell inside. AIR 2000DM duct sensor has pedo tubes for drawing a sample from the ventilation duct. STANDARD FEATURES: • Relay option available • 10 year sensing element life • Optional duct mounted unit • Low voltage circuits • Interfaces directly to DDC systems • Linear 4 to 20 mA output or 0 to 10 vdc output • Other ranges available • Optional digital display TOXALERT INTERNATIONAL, INC.
- 
												  Probes Facilitate Rollout of Environmentally Friendly RefrigerationCO2 PROBES FACILITATE ROLLOUT OF ENVIRONMENTALLY FRIENDLY REFRIGERATION Supermarkets all over Australia and New Zealand are benefiting from advanced carbon dioxide monitors as new natural refrigeration systems are installed in the fight against climate change. Introduction Over the last 8 years, Vaisala carbon dioxide probes have been employed widely across Woolworths Group stores, delivering a The Woolworths Group employs over 205,000 staff and range of benefits and helping the group to achieve its strategic serves 900 million customers each year. As a large and goals. diverse organisation, Woolworths knows that its approach to sustainability has an impact on national economies, communities and environments, and this is reflected in the Group’s Corporate Global move to natural refrigerants Responsibility Strategy 2020. Synthetic refrigerant gases have been utilised in a wide variety The strategy is built around twenty key targets which cover of industries for many decades. However, Chlorofluorocarbons Woolworths’ engagement with customers, communities, supply (CFCs) caused damage to the ozone layer and were phased chain and team members, as well as its responsibility to minimise out following the Montreal Protocol in 1987. Production of the environmental impact of its operations. One of the twenty Hydrochlorofluorocarbons (HCFCs) then increased globally, commitments within the strategy is to innovate with natural because they are less harmful to stratospheric ozone. However, refrigerants and reduce refrigerant leakage in its stores by 15 per HCFCs are very powerful greenhouse gases so Hydrofluorocarbons cent (of carbon dioxide equivalent) below 2015 levels. (HFCs) became more popular. Nevertheless, most HCFCs and HFCs have a global warming potential (GWP) that is thousands of times Carbon dioxide (CO2) is commonly regarded as the ideal natural refrigerant.
- 
												  US5345830.Pdf|||||I||||||||US005345830A United States Patent (19) 11 Patent Number: 5,345,830 Rogers et al. 45 Date of Patent: ck Sep. 13, 1994 54 FIRE FIGHTING TRAINER AND APPARATUS INCLUDING A OTHER PUBLICATIONS TEMPERATURE SENSOR "Fire Trainer T-2000” manual, AAI corporation, un dated. 75) Inventors: William Rogers, Hopatcong; James "Trainer Engineering Report for Advanced Fire Fight J. Ernst, Livingston; Steven ing Surface Ship Trainer', Austin Electronics, Jan. Williamson, Haledon; Dominick J. 1988 (excerpt). Musto, Middlesex, all of N.J. Primary Examiner-Hezron E. Williams 73) Assignee: Symtron Systems, Inc., Fair Lawn, Assistant Examiner-George M. Dombroske N.J. Attorney, Agent, or Firm-Richard T. Laughlin * Notice: The portion of the term of this patent 57 ABSTRACT subsequent to Jan. 8, 2008 has been A fire fighting trainer for use in training fire fighters is disclaimed. provided. The fire fighting trainer includes a structure (21) Appl. No.: 80,484 having a plurality of chambers having concrete or grat ing floors. Each chamber contains one or a series of real 22 Filed: Jun. 18, 1993 or simulated items, which are chosen from a group of items, such as furniture and fixtures and equipment. The Related U.S. Application Data trainer also includes a smoke generating system having 60 Division of Ser. No. 873,965, Apr. 24, 1992, Pat. No. a smoke generator having a smoke line with an outlet 5,233,869, which is a continuation of Ser. No. 625,210, for each chamber. The trainer also includes a propane Dec. 10, 1990, abandoned, which is a continuation-in gas flame generating system having at least one propane part of Ser.
- 
												  Sensor Suite Sensors OverviewSensor Suite Sensors Overview Sensor Suite Sensors: Overview Sensor Suite Sensors enable OptiNet® to cost effectively monitor and control a breadth of environmental parameters throughout a facility. Located within a Sensor Suite, the sensors evaluate an array of environmental conditions using a shared sensing architecture. In lieu of locating individual discrete sensors in each space, OptiNet gathers air samples from the spaces and multiplexes them across the OptiNet network back to the Sensor Suite for analysis. OptiNet’s centralized sensor platform affords a more robust, cost effective approach to monitoring many parameters at many locations. A “virtual” sensor function is created as if the sensors were actually located in the environment being monitored. A shared platform additionally negates sensor errors through a true differential measurement (comparing outside to inside conditions via a common shared FEATURES sensor); while minimizing calibration and maintenance costs. • Sensor Suite Sensors are tailored to match specific monitoring and Sensor Suite Sensors have unique performance specifications and product features control needs. to meet specific applications, such as demand controlled ventilation, differential • Calibration and maintenance enthalpy economizer control; or for monitoring only purposes. The ability to sense of sensors is automatically and a variety of conditions, combined with a specific level of sensor performance, routinely scheduled through optimizes an application’s potential energy savings, control or monitoring capacity. Aircuity’s calibration depot and Assurance Services program. OptiNet’s Assurance Services plan assures that the sensors will continue to perform • Flexible architecture for future today, tomorrow, and in to the future. Aircuity’s Calibration Depot services routinely sensor enhancements and refresh all sensors within the Sensor Suite with factory calibrated and serviced units technology updates.
- 
												  Lecture 3. the Basic Properties of the Natural Atmosphere 1. CompositionLecture 3. The basic properties of the natural atmosphere Objectives: 1. Composition of air. 2. Pressure. 3. Temperature. 4. Density. 5. Concentration. Mole. Mixing ratio. 6. Gas laws. 7. Dry air and moist air. Readings: Turco: p.11-27, 38-43, 366-367, 490-492; Brimblecombe: p. 1-5 1. Composition of air. The word atmosphere derives from the Greek atmo (vapor) and spherios (sphere). The Earth’s atmosphere is a mixture of gases that we call air. Air usually contains a number of small particles (atmospheric aerosols), clouds of condensed water, and ice cloud. NOTE : The atmosphere is a thin veil of gases; if our planet were the size of an apple, its atmosphere would be thick as the apple peel. Some 80% of the mass of the atmosphere is within 10 km of the surface of the Earth, which has a diameter of about 12,742 km. The Earth’s atmosphere as a mixture of gases is characterized by pressure, temperature, and density which vary with altitude (will be discussed in Lecture 4). The atmosphere below about 100 km is called Homosphere. This part of the atmosphere consists of uniform mixtures of gases as illustrated in Table 3.1. 1 Table 3.1. The composition of air. Gases Fraction of air Constant gases Nitrogen, N2 78.08% Oxygen, O2 20.95% Argon, Ar 0.93% Neon, Ne 0.0018% Helium, He 0.0005% Krypton, Kr 0.00011% Xenon, Xe 0.000009% Variable gases Water vapor, H2O 4.0% (maximum, in the tropics) 0.00001% (minimum, at the South Pole) Carbon dioxide, CO2 0.0365% (increasing ~0.4% per year) Methane, CH4 ~0.00018% (increases due to agriculture) Hydrogen, H2 ~0.00006% Nitrous oxide, N2O ~0.00003% Carbon monoxide, CO ~0.000009% Ozone, O3 ~0.000001% - 0.0004% Fluorocarbon 12, CF2Cl2 ~0.00000005% Other gases 1% Oxygen 21% Nitrogen 78% 2 • Some gases in Table 3.1 are called constant gases because the ratio of the number of molecules for each gas and the total number of molecules of air do not change substantially from time to time or place to place.
- 
												  Carbon Monoxide Levels and RisksCarbon Monoxide Levels and Risks CO Level Action CO Level Action 0.1 ppm Natural atmosphere level or clean air. 70-75 ppm Heart patients experience an increase in chest pain. Significant decrease in 1 ppm An increase of 1 ppm in the maximum dai- oxygen available to the myocardium/ ly one-hour exposure is associated with a heart (HbCO 10%). 0.96 percent increase in the risk of hospi- 100 ppm Headache, tiredness, dizziness, nausea talization from cardiovascular disease within 2 hrs of exposure. At 5 hrs, dam- among people over the age of 65. age to hearts and brains. (Lewey & Drabkin) (Circulation: Journal of the AHA, Sept, 2009) 200 ppm Healthy adults will have headache, nau- 3-7 ppm 6% increase in the rate of admission in sea at this level. hospitals of non-elderly for asthma. (L. Shep- pard et al.,Epidemiology, Jan 1999) NIOSH & OSHA recommend evacua- tion of the workplace at this level. 5-6 ppm Significant risk of low birth weight if exposed during last trimester - in a study 400 ppm Frontal headache within 1-2 hours—life of 125,573 pregnancies (Ritz & Yu, Environ. threatening within 3 hours. Health Perspectives, 1999). 500 ppm Concentration in a garage when a cold 9 ppm EPA and WHO maximum outdoor air lev- car is started in an open garage and el, all ages, (TWA, 8 hrs). Maximum allow- warmed up for 2 minutes. (Greiner, 1997) able indoor level (ASHRAE) 800 ppm Healthy adults will have nausea, dizzi- Lowest CO level producing significant ef- ness and convulsions within 45 fects on cardiac function (ST-segment minutes.
- 
												  Technical Specification• 1.09.280E • 5.3.2007 © VALLOX Code 3486 SE TECHNICAL SPECIFICATION DIGIT SED ELECTRONIC CONTROLLER WITH LCD DISPLAY TECHNICAL SPECIFICATION • For dwelling-specific ventilation Input power 230 V, 50 Hz, 11 A in large detached houses (+ post-heating unit 4.3 A) • Supply and extract air ventilation Class of protection IP34 with heat recovery Fans alternating Extract air 300 W 1.31 A 205 dm3/s 100 Pa • Heat recovery efficiency of the 3 counter-current cell up to 80% current (AC) Supply air 300 W 1.31 A 185 dm /s 100 Pa Fans, direct Extract air 2 x 90 W 0.6 A 180 dm3/s 100 Pa • Electronic control panel with LCD display current (DC) Supply air 2 x 90 W 0.6 A 165 dm3/s 100 Pa • Week clock control as a standard feature Heat recovery Counter-current cell, > 80% • Humidity control (option) Heat recovery bypass Summer / winter automation • Carbon dioxide control (option) Electric preheating unit 2.0 kW 8.7 A • Maintenance reminder Electric post-heating unit (option) 1.0 kW 4.3 A • Fireplace / booster switch function Water post-heating radiator (option) ca 3 kW at the controller Filters Supply air G3, F7 • Silent operation Extract air G3 Weight / basic unit 146 kg • Good filtering Ventilation adjustment options – control via control panel • Summer / winter automation – CO2 and %RH control • Fixed air flow measuring outlets – remote monitoring control (LON converter) – remote monitoring control (voltage / current signal) Options – electric post-heating unit – water post-heating unit – CO2 sensor – %RH sensor – pressure difference switch – LON converter – Silencer TECHNICAL SPECIFICATION © VALLOX • We reserve the right to make changes without prior notification.
- 
												  CEE 370 Environmental Engineering Principles Henry'sCEE 370 Lecture #7 9/18/2019 Updated: 18 September 2019 Print version CEE 370 Environmental Engineering Principles Lecture #7 Environmental Chemistry V: Thermodynamics, Henry’s Law, Acids-bases II Reading: Mihelcic & Zimmerman, Chapter 3 Davis & Masten, Chapter 2 Mihelcic, Chapt 3 David Reckhow CEE 370 L#7 1 Henry’s Law Henry's Law states that the amount of a gas that dissolves into a liquid is proportional to the partial pressure that gas exerts on the surface of the liquid. In equation form, that is: C AH = K p A where, CA = concentration of A, [mol/L] or [mg/L] KH = equilibrium constant (often called Henry's Law constant), [mol/L-atm] or [mg/L-atm] pA = partial pressure of A, [atm] David Reckhow CEE 370 L#7 2 Lecture #7 Dave Reckhow 1 CEE 370 Lecture #7 9/18/2019 Henry’s Law Constants Reaction Name Kh, mol/L-atm pKh = -log Kh -2 CO2(g) _ CO2(aq) Carbon 3.41 x 10 1.47 dioxide NH3(g) _ NH3(aq) Ammonia 57.6 -1.76 -1 H2S(g) _ H2S(aq) Hydrogen 1.02 x 10 0.99 sulfide -3 CH4(g) _ CH4(aq) Methane 1.50 x 10 2.82 -3 O2(g) _ O2(aq) Oxygen 1.26 x 10 2.90 David Reckhow CEE 370 L#7 3 Example: Solubility of O2 in Water Background Although the atmosphere we breathe is comprised of approximately 20.9 percent oxygen, oxygen is only slightly soluble in water. In addition, the solubility decreases as the temperature increases.
- 
												  Pressure Vs. Volume and Boyle'sPressure vs. Volume and Boyle’s Law SCIENTIFIC Boyle’s Law Introduction In 1642 Evangelista Torricelli, who had worked as an assistant to Galileo, conducted a famous experiment demonstrating that the weight of air would support a column of mercury about 30 inches high in an inverted tube. Torricelli’s experiment provided the first measurement of the invisible pressure of air. Robert Boyle, a “skeptical chemist” working in England, was inspired by Torricelli’s experiment to measure the pressure of air when it was compressed or expanded. The results of Boyle’s experiments were published in 1662 and became essentially the first gas law—a mathematical equation describing the relationship between the volume and pressure of air. What is Boyle’s law and how can it be demonstrated? Concepts • Gas properties • Pressure • Boyle’s law • Kinetic-molecular theory Background Open end Robert Boyle built a simple apparatus to measure the relationship between the pressure and volume of air. The apparatus ∆h ∆h = 29.9 in. Hg consisted of a J-shaped glass tube that was Sealed end 1 sealed at one end and open to the atmosphere V2 = /2V1 Trapped air (V1) at the other end. A sample of air was trapped in the sealed end by pouring mercury into Mercury the tube (see Figure 1). In the beginning of (Hg) the experiment, the height of the mercury Figure 1. Figure 2. column was equal in the two sides of the tube. The pressure of the air trapped in the sealed end was equal to that of the surrounding air and equivalent to 29.9 inches (760 mm) of mercury.
- 
												  Carbon Dioxide Sensors GG-VL2-CO2VENT LINE GG-VL2-CO2 CARBON DIOXIDE SENSOR Key Features • Carbon dioxide-selective infrared sensor technology prevents false alarms • Continuous monitoring of refrigeration system relief valves • Rugged, long life, and low power catalytic-bead sensor • Designed for harsh environments (-40°F to +140°F) • Sensor and preamp in one assembly • 0-5% CO2 (0-50,000 ppm) detection range • Ability to detect “weeping valves” to prevent refrigerant loss over time Carbon Dioxide sensors Carbon Dioxide • Sensor housing allows for easy sensor replacement and calibration • 316 stainless steel 18 gauge enclosure • Industry standard 24 VDC, linear 4/20 mA output From unlikely high-pressure releases to the inevitable “weepers”, the CTI Vent Line sensor will notify you … before your neighbors do. The GG VL2 utilizes a rugged infrared High concentrations of carbon diox- The GG-VL2-CO2 provides an industry sensor technology for fast leak detec- ide gases in your vent line are usually standard linear 4/20 mA output signal tion and long life. The standard 0-5% indications of a leaking valve or system compatible with most gas detection CO2 detection range of the GG-VL2- overpressure. This could mean costly systems and PLCs. Expect long sensor CO2 provides real-time continuous repairs or plant downtime, not to men- life and no zero-signal drift over time. monitoring of carbon dioxide concen- tion loss of refrigerant and regulatory trations in your high-pressure relief fines. Early detection can save money vent header. while also protecting equipment, prod- uct,
- 
												  Worksheet 6 Solutions MATH 1A Fall 2015Worksheet 6 Solutions MATH 1A Fall 2015 for 27 October 2015 These problems are taken from a set of science problems for calculus written by Jim Belk, avail- able at math.bard.edu/belk/writing.htm. If you’re looking for more practice on related rates or exponential growth, check it out! His problems are less terminally boring than the textbook’s problems. Exercise 6.1. In chemistry and physics, Boyle’s Law describes the relationship between the pressure and volume of a fixed quantity of gas maintained at a constant temperature. The law states that: PV = a constant where P is the pressure of the gas, and V is the volume. dP dV 1. Take the derivative of Boyle’s law to find an equation relating , , P, and V. dt dt 2. A sample of gas is placed in a cylindrical piston. At the beginning of the experiment, the gas occupies a volume of 250 cm3, and has a pressure of 100 kPa. The piston is slowly compressed, decreasing the volume of the gas at a rate of 50 cm3/min. How quickly will the pressure of the gas initially increase? Solution. For the first question, by taking an implicit derivative (using the product rule on the left hand side) we find dP dV V + P = 0. dt dt For the second question, we simply plug the values provided into the equation we’ve just found, dP (250) + (100)(50) = 0, dt dP and solve to find dt = 20 kPa/min. Exercise 6.2. In chemistry, the pH of a solution is defined by the formula pH = −0.4343 ln(a), where a is the hydrogen ion activity (a measure of the “effective concentration” of hydrogen ions).