Influence of Hydrophobe Fraction Content on the Rheological Properties of Hydrosoluble Associative Polymers Obtained by Micellar Polymerization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling and Numerical Simulation of Phase Separation in Polymer Modified Bitumen by Phase- Field Method
http://www.diva-portal.org Postprint This is the accepted version of a paper published in Materials & design. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Zhu, J., Lu, X., Balieu, R., Kringos, N. (2016) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase- field method. Materials & design, 107: 322-332 http://dx.doi.org/10.1016/j.matdes.2016.06.041 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188830 ACCEPTED MANUSCRIPT Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method Jiqing Zhu a,*, Xiaohu Lu b, Romain Balieu a, Niki Kringos a a Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden b Nynas AB, SE-149 82 Nynäshamn, Sweden * Corresponding author. Email: [email protected] (J. Zhu) Abstract In this paper, a phase-field model with viscoelastic effects is developed for polymer modified bitumen (PMB) with the aim to describe and predict the PMB storage stability and phase separation behaviour. The viscoelastic effects due to dynamic asymmetry between bitumen and polymer are represented in the model by introducing a composition-dependent mobility coefficient. A double-well potential for PMB system is proposed on the basis of the Flory-Huggins free energy of mixing, with some simplifying assumptions made to take into account the complex chemical composition of bitumen. -
Solutes and Solution
Solutes and Solution The first rule of solubility is “likes dissolve likes” Polar or ionic substances are soluble in polar solvents Non-polar substances are soluble in non- polar solvents Solutes and Solution There must be a reason why a substance is soluble in a solvent: either the solution process lowers the overall enthalpy of the system (Hrxn < 0) Or the solution process increases the overall entropy of the system (Srxn > 0) Entropy is a measure of the amount of disorder in a system—entropy must increase for any spontaneous change 1 Solutes and Solution The forces that drive the dissolution of a solute usually involve both enthalpy and entropy terms Hsoln < 0 for most species The creation of a solution takes a more ordered system (solid phase or pure liquid phase) and makes more disordered system (solute molecules are more randomly distributed throughout the solution) Saturation and Equilibrium If we have enough solute available, a solution can become saturated—the point when no more solute may be accepted into the solvent Saturation indicates an equilibrium between the pure solute and solvent and the solution solute + solvent solution KC 2 Saturation and Equilibrium solute + solvent solution KC The magnitude of KC indicates how soluble a solute is in that particular solvent If KC is large, the solute is very soluble If KC is small, the solute is only slightly soluble Saturation and Equilibrium Examples: + - NaCl(s) + H2O(l) Na (aq) + Cl (aq) KC = 37.3 A saturated solution of NaCl has a [Na+] = 6.11 M and [Cl-] = -
Sanitization: Concentration, Temperature, and Exposure Time
Sanitization: Concentration, Temperature, and Exposure Time Did you know? According to the CDC, contaminated equipment is one of the top five risk factors that contribute to foodborne illnesses. Food contact surfaces in your establishment must be cleaned and sanitized. This can be done either by heating an object to a high enough temperature to kill harmful micro-organisms or it can be treated with a chemical sanitizing compound. 1. Heat Sanitization: Allowing a food contact surface to be exposed to high heat for a designated period of time will sanitize the surface. An acceptable method of hot water sanitizing is by utilizing the three compartment sink. The final step of the wash, rinse, and sanitizing procedure is immersion of the object in water with a temperature of at least 170°F for no less than 30 seconds. The most common method of hot water sanitizing takes place in the final rinse cycle of dishwashing machines. Water temperature must be at least 180°F, but not greater than 200°F. At temperatures greater than 200°F, water vaporizes into steam before sanitization can occur. It is important to note that the surface temperature of the object being sanitized must be at 160°F for a long enough time to kill the bacteria. 2. Chemical Sanitization: Sanitizing is also achieved through the use of chemical compounds capable of destroying disease causing bacteria. Common sanitizers are chlorine (bleach), iodine, and quaternary ammonium. Chemical sanitizers have found widespread acceptance in the food service industry. These compounds are regulated by the U.S. Environmental Protection Agency and consequently require labeling with the word “Sanitizer.” The labeling should also include what concentration to use, data on minimum effective uses and warnings of possible health hazards. -
Chapter 2: Basic Tools of Analytical Chemistry
Chapter 2 Basic Tools of Analytical Chemistry Chapter Overview 2A Measurements in Analytical Chemistry 2B Concentration 2C Stoichiometric Calculations 2D Basic Equipment 2E Preparing Solutions 2F Spreadsheets and Computational Software 2G The Laboratory Notebook 2H Key Terms 2I Chapter Summary 2J Problems 2K Solutions to Practice Exercises In the chapters that follow we will explore many aspects of analytical chemistry. In the process we will consider important questions such as “How do we treat experimental data?”, “How do we ensure that our results are accurate?”, “How do we obtain a representative sample?”, and “How do we select an appropriate analytical technique?” Before we look more closely at these and other questions, we will first review some basic tools of importance to analytical chemists. 13 14 Analytical Chemistry 2.0 2A Measurements in Analytical Chemistry Analytical chemistry is a quantitative science. Whether determining the concentration of a species, evaluating an equilibrium constant, measuring a reaction rate, or drawing a correlation between a compound’s structure and its reactivity, analytical chemists engage in “measuring important chemical things.”1 In this section we briefly review the use of units and significant figures in analytical chemistry. 2A.1 Units of Measurement Some measurements, such as absorbance, A measurement usually consists of a unit and a number expressing the do not have units. Because the meaning of quantity of that unit. We may express the same physical measurement with a unitless number may be unclear, some authors include an artificial unit. It is not different units, which can create confusion. For example, the mass of a unusual to see the abbreviation AU, which sample weighing 1.5 g also may be written as 0.0033 lb or 0.053 oz. -
Chapter 15: Solutions
452-487_Ch15-866418 5/10/06 10:51 AM Page 452 CHAPTER 15 Solutions Chemistry 6.b, 6.c, 6.d, 6.e, 7.b I&E 1.a, 1.b, 1.c, 1.d, 1.j, 1.m What You’ll Learn ▲ You will describe and cate- gorize solutions. ▲ You will calculate concen- trations of solutions. ▲ You will analyze the colliga- tive properties of solutions. ▲ You will compare and con- trast heterogeneous mixtures. Why It’s Important The air you breathe, the fluids in your body, and some of the foods you ingest are solu- tions. Because solutions are so common, learning about their behavior is fundamental to understanding chemistry. Visit the Chemistry Web site at chemistrymc.com to find links about solutions. Though it isn’t apparent, there are at least three different solu- tions in this photo; the air, the lake in the foreground, and the steel used in the construction of the buildings are all solutions. 452 Chapter 15 452-487_Ch15-866418 5/10/06 10:52 AM Page 453 DISCOVERY LAB Solution Formation Chemistry 6.b, 7.b I&E 1.d he intermolecular forces among dissolving particles and the Tattractive forces between solute and solvent particles result in an overall energy change. Can this change be observed? Safety Precautions Dispose of solutions by flushing them down a drain with excess water. Procedure 1. Measure 10 g of ammonium chloride (NH4Cl) and place it in a Materials 100-mL beaker. balance 2. Add 30 mL of water to the NH4Cl, stirring with your stirring rod. -
Electrification at Water–Hydrophobe Interfaces
Electrification at water–hydrophobe interfaces Item Type Article Authors Nauruzbayeva, Jamilya; Sun, Zhonghao; Gallo Junior, Adair; Ibrahim, Mahmoud; Santamarina, Carlos; Mishra, Himanshu Citation Nauruzbayeva, J., Sun, Z., Gallo, A., Ibrahim, M., Santamarina, J. C., & Mishra, H. (2020). Electrification at water–hydrophobe interfaces. Nature Communications, 11(1). doi:10.1038/ s41467-020-19054-8 Eprint version Publisher's Version/PDF DOI 10.1038/s41467-020-19054-8 Publisher Springer Nature Journal Nature Communications Rights This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. Download date 05/10/2021 16:06:59 Item License https://creativecommons.org/licenses/by/4.0 Link to Item http://hdl.handle.net/10754/665657 ARTICLE https://doi.org/10.1038/s41467-020-19054-8 OPEN Electrification at water–hydrophobe interfaces Jamilya Nauruzbayeva1,3, Zhonghao Sun 2,3, Adair Gallo Jr.1,3, Mahmoud Ibrahim1, J. Carlos Santamarina 2 & ✉ Himanshu Mishra 1 The mechanisms leading to the electrification of water when it comes in contact with hydrophobic surfaces remains a research frontier in chemical science. -
Lecture 3. the Basic Properties of the Natural Atmosphere 1. Composition
Lecture 3. The basic properties of the natural atmosphere Objectives: 1. Composition of air. 2. Pressure. 3. Temperature. 4. Density. 5. Concentration. Mole. Mixing ratio. 6. Gas laws. 7. Dry air and moist air. Readings: Turco: p.11-27, 38-43, 366-367, 490-492; Brimblecombe: p. 1-5 1. Composition of air. The word atmosphere derives from the Greek atmo (vapor) and spherios (sphere). The Earth’s atmosphere is a mixture of gases that we call air. Air usually contains a number of small particles (atmospheric aerosols), clouds of condensed water, and ice cloud. NOTE : The atmosphere is a thin veil of gases; if our planet were the size of an apple, its atmosphere would be thick as the apple peel. Some 80% of the mass of the atmosphere is within 10 km of the surface of the Earth, which has a diameter of about 12,742 km. The Earth’s atmosphere as a mixture of gases is characterized by pressure, temperature, and density which vary with altitude (will be discussed in Lecture 4). The atmosphere below about 100 km is called Homosphere. This part of the atmosphere consists of uniform mixtures of gases as illustrated in Table 3.1. 1 Table 3.1. The composition of air. Gases Fraction of air Constant gases Nitrogen, N2 78.08% Oxygen, O2 20.95% Argon, Ar 0.93% Neon, Ne 0.0018% Helium, He 0.0005% Krypton, Kr 0.00011% Xenon, Xe 0.000009% Variable gases Water vapor, H2O 4.0% (maximum, in the tropics) 0.00001% (minimum, at the South Pole) Carbon dioxide, CO2 0.0365% (increasing ~0.4% per year) Methane, CH4 ~0.00018% (increases due to agriculture) Hydrogen, H2 ~0.00006% Nitrous oxide, N2O ~0.00003% Carbon monoxide, CO ~0.000009% Ozone, O3 ~0.000001% - 0.0004% Fluorocarbon 12, CF2Cl2 ~0.00000005% Other gases 1% Oxygen 21% Nitrogen 78% 2 • Some gases in Table 3.1 are called constant gases because the ratio of the number of molecules for each gas and the total number of molecules of air do not change substantially from time to time or place to place. -
Carbon Monoxide Levels and Risks
Carbon Monoxide Levels and Risks CO Level Action CO Level Action 0.1 ppm Natural atmosphere level or clean air. 70-75 ppm Heart patients experience an increase in chest pain. Significant decrease in 1 ppm An increase of 1 ppm in the maximum dai- oxygen available to the myocardium/ ly one-hour exposure is associated with a heart (HbCO 10%). 0.96 percent increase in the risk of hospi- 100 ppm Headache, tiredness, dizziness, nausea talization from cardiovascular disease within 2 hrs of exposure. At 5 hrs, dam- among people over the age of 65. age to hearts and brains. (Lewey & Drabkin) (Circulation: Journal of the AHA, Sept, 2009) 200 ppm Healthy adults will have headache, nau- 3-7 ppm 6% increase in the rate of admission in sea at this level. hospitals of non-elderly for asthma. (L. Shep- pard et al.,Epidemiology, Jan 1999) NIOSH & OSHA recommend evacua- tion of the workplace at this level. 5-6 ppm Significant risk of low birth weight if exposed during last trimester - in a study 400 ppm Frontal headache within 1-2 hours—life of 125,573 pregnancies (Ritz & Yu, Environ. threatening within 3 hours. Health Perspectives, 1999). 500 ppm Concentration in a garage when a cold 9 ppm EPA and WHO maximum outdoor air lev- car is started in an open garage and el, all ages, (TWA, 8 hrs). Maximum allow- warmed up for 2 minutes. (Greiner, 1997) able indoor level (ASHRAE) 800 ppm Healthy adults will have nausea, dizzi- Lowest CO level producing significant ef- ness and convulsions within 45 fects on cardiac function (ST-segment minutes. -
CEE 370 Environmental Engineering Principles Henry's
CEE 370 Lecture #7 9/18/2019 Updated: 18 September 2019 Print version CEE 370 Environmental Engineering Principles Lecture #7 Environmental Chemistry V: Thermodynamics, Henry’s Law, Acids-bases II Reading: Mihelcic & Zimmerman, Chapter 3 Davis & Masten, Chapter 2 Mihelcic, Chapt 3 David Reckhow CEE 370 L#7 1 Henry’s Law Henry's Law states that the amount of a gas that dissolves into a liquid is proportional to the partial pressure that gas exerts on the surface of the liquid. In equation form, that is: C AH = K p A where, CA = concentration of A, [mol/L] or [mg/L] KH = equilibrium constant (often called Henry's Law constant), [mol/L-atm] or [mg/L-atm] pA = partial pressure of A, [atm] David Reckhow CEE 370 L#7 2 Lecture #7 Dave Reckhow 1 CEE 370 Lecture #7 9/18/2019 Henry’s Law Constants Reaction Name Kh, mol/L-atm pKh = -log Kh -2 CO2(g) _ CO2(aq) Carbon 3.41 x 10 1.47 dioxide NH3(g) _ NH3(aq) Ammonia 57.6 -1.76 -1 H2S(g) _ H2S(aq) Hydrogen 1.02 x 10 0.99 sulfide -3 CH4(g) _ CH4(aq) Methane 1.50 x 10 2.82 -3 O2(g) _ O2(aq) Oxygen 1.26 x 10 2.90 David Reckhow CEE 370 L#7 3 Example: Solubility of O2 in Water Background Although the atmosphere we breathe is comprised of approximately 20.9 percent oxygen, oxygen is only slightly soluble in water. In addition, the solubility decreases as the temperature increases. -
Chemistry 1220 Chapter 17 Practice Exam
Dr. Fus CHEM 1220 CHEMISTRY 1220 CHAPTER 17 PRACTICE EXAM All questions listed below are problems taken from old Chemistry 123 exams given here at The Ohio State University. Read Chapter 17.4 – 17.7 and complete the following problems. These problems will not be graded or collected, but will be very similar to what you will see on an exam. Ksp and Molar Solubility (Section 17.4) The solubility product expression equals the product of the concentrations of the ions involved in the equilibrium, each raised to the power of its coefficient in the equilibrium expression. For example: PbCl2(s) Pb2+(aq) + 2Cl-(aq) Ksp=[Pb2+] [Cl-]2 Why isn’t the concentration of PbCl2 in the denominator of the Ksp? Recall from Section 15.4 that whenever a pure solid or pure liquid is in a heterogeneous (multiple phases present) equilibrium, its concentration is not included in the equilibrium expression. 1. The solubility product expression for La2(CO3)3 is Ksp = ? First, write the equilibrium expression. The subscript following each atom in the solid is the number of ions of that atom in solution. The total charges must add to zero: La2(CO3)3(s) 2La3+(aq) + 3CO32-(aq) Given the information above and the equilibrium expression: Ksp=[La3+]2 [CO32-]3 2. The solubility product expression for Zn3(PO4)2 is Ksp = ? Zn3(PO4)2(s) 3Zn2+(aq) + 2PO43-(aq) Ksp=[Zn2+]3 [PO43-]2 3. The solubility product expression for Al2(CO3)3 is Ksp = ? Al2(CO3)3(s) 2Al3+(aq) + 3CO32-(aq) Ksp=[Al3+]2 [CO32-]3 4. -
Pressure Vs. Volume and Boyle's
Pressure vs. Volume and Boyle’s Law SCIENTIFIC Boyle’s Law Introduction In 1642 Evangelista Torricelli, who had worked as an assistant to Galileo, conducted a famous experiment demonstrating that the weight of air would support a column of mercury about 30 inches high in an inverted tube. Torricelli’s experiment provided the first measurement of the invisible pressure of air. Robert Boyle, a “skeptical chemist” working in England, was inspired by Torricelli’s experiment to measure the pressure of air when it was compressed or expanded. The results of Boyle’s experiments were published in 1662 and became essentially the first gas law—a mathematical equation describing the relationship between the volume and pressure of air. What is Boyle’s law and how can it be demonstrated? Concepts • Gas properties • Pressure • Boyle’s law • Kinetic-molecular theory Background Open end Robert Boyle built a simple apparatus to measure the relationship between the pressure and volume of air. The apparatus ∆h ∆h = 29.9 in. Hg consisted of a J-shaped glass tube that was Sealed end 1 sealed at one end and open to the atmosphere V2 = /2V1 Trapped air (V1) at the other end. A sample of air was trapped in the sealed end by pouring mercury into Mercury the tube (see Figure 1). In the beginning of (Hg) the experiment, the height of the mercury Figure 1. Figure 2. column was equal in the two sides of the tube. The pressure of the air trapped in the sealed end was equal to that of the surrounding air and equivalent to 29.9 inches (760 mm) of mercury. -
Affinity of Small-Molecule Solutes to Hydrophobic, Hydrophilic, and Chemically Patterned Interfaces in Aqueous Solution
Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution Jacob I. Monroea, Sally Jiaoa, R. Justin Davisb, Dennis Robinson Browna, Lynn E. Katzb, and M. Scott Shella,1 aDepartment of Chemical Engineering, University of California, Santa Barbara, CA 93106; and bDepartment of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712 Edited by Peter J. Rossky, Rice University, Houston, TX, and approved November 17, 2020 (received for review September 30, 2020) Performance of membranes for water purification is highly influ- However, a molecular understanding that links membrane enced by the interactions of solvated species with membrane surface chemistry to solute affinity and hence membrane func- surfaces, including surface adsorption of solutes upon fouling. tional properties remains incomplete, due in part to the complex Current efforts toward fouling-resistant membranes often pursue interplay among specific interactions (e.g., hydrogen bonds, surface hydrophilization, frequently motivated by macroscopic electrostatics, dispersion) and molecular morphology (e.g., sur- measures of hydrophilicity, because hydrophobicity is thought to face and polymer configurations) that are difficult to disentangle increase solute–surface affinity. While this heuristic has driven di- (11–14). Chemically heterogeneous surfaces are even less un- verse membrane functionalization strategies, here we build on derstood but can affect fouling in complex ways.