It Takes Two Transposons to Tango Transposable-Element-Mediated Chromosomal Rearrangements

Total Page:16

File Type:pdf, Size:1020Kb

It Takes Two Transposons to Tango Transposable-Element-Mediated Chromosomal Rearrangements Personal view of the genome project Perspective 45 Goffeau, A. et al. (1997) The Yeast Genome Directory. Nature 48 Leversha, M.A. et al. (1999) A molecular cytogenetic clone to microarrays. Nat. Genet. 20, 207–211 387, 1–105 resource for chromosome 22. Chromosome Res. 7, 571–573 51 Lockhart, D.J. and Winzeler, E.A. (2000) Genomics, gene 46 The C. elegans Sequencing Consortium (1998) Genome 49 Kirsch, I.R. et al. (2000) A systematic, high-resolution expression and DNA arrays. Nature 405, 827–836 sequence of the nematode C. elegans: a platform for linkage of the cytogenetic and physical maps of the human 52 Pandey, A. and Mann, M. (2000) Proteomics to study genes investigating biology. Science 282, 2012–2018 genome. Nat. Genet. 24, 339–340 and genomes. Nature 405, 837–846 47 Adams, M.D. et al. (2000) The genome sequence of 50 Pinkel, D. et al. (1998) High resolution analysis of DNA copy 53 Risch, N.J. (2000) Searching for genetic determinants in the Drosophila melanogaster. Science 287, 2185–2195 number variation using comparative genomic hybridization new millennium. Nature 405, 847–856 It takes two transposons to tango transposable-element-mediated chromosomal rearrangements Transposable elements (TEs) promote various chromosomal rearrangements more efficiently, and often more specifically, than other cellular processes1–3. One explanation of such events is homologous recombination between multiple copies of a TE present in a genome. Although this does occur, strong evidence from a number of TE systems in bacteria, plants and animals suggests that another mechanism – alternative transposition – induces a large proportion of TE-associated chromosomal rearrangements. This paper reviews evidence for alternative transposition from a number of unrelated but structurally similar TEs. The similarities between alternative transposition and V(D)J recombination are also discussed, as is the use of alternative transposition as a genetic tool. ince the first description of mobile genetic elements4,5, are TEs that contain sequences encoding other genes in Stransposable elements (TEs) have been found to be addition to transposase, such as genes encoding enzymes associated with chromosomal rearrangements such as responsible for antibiotic resistance. In eukaryotes, all TEs deletions, duplications, inversions, the formation of acen- that transpose by a DNA intermediate are classified as tric fragments and dicentric chromosomes, translocations transposons. Some Class II TEs, such as IS10, IS50, Ac/Ds and recombination of host genomes. This aspect of trans- (Box 1), Tam3, P, hobo and mariner, encode a single posable element function has implications for evolution2,6 transposase gene. Other Class II TEs, such as Tn7, Phage and for understanding several human genomic disorders7,8 Mu, Mutator and En/Spm, encode multiple proteins that and, because of this, the mechanisms involved in trans- catalyse and regulate transposition. poson-mediated chromosomal rearrangements warrant Two possible mechanisms by which TE-associated thorough investigation. chromosomal rearrangements can occur are: (i) indirectly TEs are classified by their sequence structure and trans- by homologous recombination or (ii) directly by an alter- position mechanisms1,3,6. Class I TEs – retroposons and native transposition process. retrotransposons – transpose by an RNA intermediate. The indirect action of TEs promotes chromosomal Retroposons have a structure similar to mRNA; retro- rearrangements by presenting the genome with multiple transposons are structurally similar to retroviruses and are similar, if not identical, sequences between which strand Yasmine H.M. Gray bounded by long terminal repeats (LTR). Class II TEs – transfer can occur. This may occur by recombination of [email protected] insertion sequences (IS elements, Box 1) and transposons – the homologous sequences or by faulty repair of double- Molecular Genetics and transpose by a DNA intermediate catalysed by a trans- strand breaks formed during transposable element Evolution Group, posase enzyme. IS elements and transposons are bounded excision using ectopic homologous sequences as a repair Research School of 3 by terminal inverted repeats (TIR). In addition to the TIR, template . Biological Sciences, additional sequences differentiate the two ends and are Not all the rearrangements observed can be explained Australian National necessary for transposition. In prokaryotes, IS elements by homologous recombination between elements at differ- University, Canberra, contain sequences encoding transposase, and transposons ent locations. For instance, rearrangements have been ACT 2601, Australia. 0168-9525/00/$ – see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0168-9525(00)02104-1 TIG October 2000, volume 16, No. 10 461 Perspective Transposons and chromosomal rearrangements FIGURE 1. Chromosomal rearrangements caused by homologous recombination (a) (b) (c) (d) inversion trends in Genetics Homologous recombination between repetitive sequences, such as TEs, can result in chromosomal rearrangement such as deletions, duplications and inversions. Each line represents a DNA double helix. The two sister chromatids of each of the homologous chromosomes are shown. Black ovals denote the centromere. TEs are represented by the thick black line bounded by open and closed arrows, indicating relative orientation of the element. The TE insertion sites are illustrated by open circles or boxes, with each shape representing distinct insertion sites on the chromosome and the equivalent sites on the chromosome(s) without a TE at that site. Homologous recombination requires a minimum of two copies of the repetitive sequence, one at each breakpoint, and is denoted by an ‘X’ in this figure. (a) TEs in same relative orientation on homologous chromosomes result in the formation of chromosomes containing either a deletion or a duplication of the intervening sequence. Both rearrangements are associated with recombination between two homologues. (b) TEs in opposite relative orientation on homologous chromosomes result in the formation of a dicentric chromosome and an acentric fragment. (c) TEs in same relative orientation on one chromosome result in the formation of chromosomes containing either a deletion or a duplication of the intervening sequence, differing from events in A by the lack of recombination between homologues and the net increase or decrease of the TE number. (d) TEs in opposite relative orientation on one chromosome can result in the formation of an inversion between the two TEs. If caused by homologous recombination, deletions and duplications can only be formed by TEs in the same relative orientation and inversions can only be formed by TEs in opposite relative orientation. Another mechanism must be invoked to explain inversions between TEs in the same relative orientation, deletions and duplications between TEs in opposite relative orientations, and all chromosomal rearrangements when a TE is present at only one of the rearrangement breakpoints. described where an element was found at only one of repair of the double-strand breaks produced during the rearrangement breakpoints in the parental chromo- alternative transposition is analogous to V(D)J recombination some9,10. Some rearrangements described are inconsistent and provides additional evidence supporting the theory with the orientation of the elements present in the chro- that V(D)J recombination is derived from a so-called RAG mosome prior to rearrangement11, such as duplications transposon. between inverted copies of a TE or inversions between TEs in the same relative orientation (Fig. 1). Also, because TEs – a common resource for genome plasticity recombination does not normally occur in Drosophila In order to comprehend complex chromosomal rearrange- melanogaster males12, rearrangements mediated by TEs ments induced by alternative transposition of TEs, one such as P and hobo must occur by another mechanism in must first understand the basics of traditional transpos- the male germ line of Drosophila. ition. The TEs inducing rearrangements described in this The direct action of TEs in promoting chromosomal review are all Class II TEs encoding a single transposase rearrangements is one mechanism that can account for and include prokaryotic IS elements and both prokaryotic rearrangements not caused by homologous recombi- and eukaryotic transposons. Functionally, these TEs share nation. TEs induce chromosomal rearrangements directly a common conservative transposition mechanism, known by an alternative version of the traditional transposition as cut-and-paste, where the first step of transposition is reaction where the TE ends involved come from separate the synapsis of complementary left- and right-TE ends, elements rather than a single element (Fig. 2b). Evidence followed by excision of the ends, target site capture and for similar events has been described for several families of strand transfer1,3. Insertion of the TE into the target mol- TEs, including the IS10/Tn10 elements in bacteria13,14, ecule can occur in either orientation relative to the original Ac/Ds elements in maize and tobacco11,15,16, Tam3 in element, resulting in a simple insertion (Fig. 2a). Repair of Antirrhinum majus (snapdragon)9,10,17–20 and P elements in the double-strand break occurs and can result in for- Drosophila21–24. mation of an excision footprint, regeneration of the TE Rearrangements associated with different TE systems using the sister chromatid as a template,
Recommended publications
  • Mobile Genetic Elements in Streptococci
    Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G.
    [Show full text]
  • Transposable Elements Drive Reorganisation of 3D Chromatin
    bioRxiv preprint doi: https://doi.org/10.1101/523712; this version posted January 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Transposable elements drive reorganisation of 3D chromatin during early embryogenesis Kai Kruse1, Noelia Díaz1, §, Rocio Enriquez-Gasca1, §, Xavier Gaume2, 4, Maria-Elena Torres-Padilla2, 3 and Juan M. Vaquerizas1, * 1. Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany. 2. Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Marchioninistraße 25, 81377 Munich, Germany. 3. Faculty of Biology, Ludwig Maximilians Universität, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. 4. Present address: Cancer Research Center of Lyon, 28 Rue Laennec, Lyon 69008, France. §. These authors have contributed equally to this work. *. Correspondence to J.M.V. ([email protected], @vaquerizasjm) Keywords: Chromosome conformation capture; low-input Hi-C; early embryonic development; totipotency; transposable elements; MERVL; TAds; 2-cell embryo; 2-cell-like cells; zygotic genome activation; CAF-1; dux. Transposable elements are abundant genetic components of eukaryotic genomes with important regulatory features affecting transcription, splicing, and recombination, among others. Here we demonstrate that the Murine Endogenous Retroviral Element (MuERV-L/MERVL) family of transposable elements drives the 3D reorganisation of the genome in the early mouse embryo. By generating Hi-C data in 2-cell-like cells, we show that MERLV elements promote the formation of insulating domain boundaries through- out the genome in vivo and in vitro.
    [Show full text]
  • Review Cell Division from a Genetic Perspective
    REVIEW CELL DIVISION FROM A GENETIC PERSPECTIVE LELAND H. HARTWELL From the Department of Genetics, University of Washington, Seattle, Washington 98195 Recently, a number of laboratories have begun to incubation at the restrictive condition for that study mutant cells that are defective in specific mutation, whereas mutants with defects in one of stages of the eukaryotic cell cycle. The long-range the continuously required functions will arrest at goals of this work are to identify the genes that the restrictive temperature with cells at a variety code for division-related proteins, to define the of positions in the cell cycle. roles that these gene products play and to investi- Classes of mutants may be distinguished from gate the hierarchies of order that assure their one another and the roles of their products delim- coordinated activity. It is my intent in this brief ited by determining the stage-specific event at review to discuss the strategies employed in this which they arrest. It is convenient to have a genetic approach and to enumerate some of the designation for the first landmark of the cell cycle new conclusions that have come to light. A recent that is blocked in a particular mutant, and I shall review on the genetics of meiosis (2) complements call it the diagnostic landmark for that mutant. this review on mitosis. Mutants of Saccharomyces cerevisiae have been identified that have diagnostic landmarks at spin- MUTANTS dle pole body (SPB) duplication, SPB separation, Mutations that inactivate gene products essential initiation of DNA synthesis, DNA replication, for division would be lethal.
    [Show full text]
  • Cell Division and Cycle
    Name: _______________________ Date:_____________ Period_________ Subject: ________ Cell Division and Cycle Read the phase to answer the questions 1 through 10. Living organisms are constantly making new cells. They make new cells in order to grow and also to replace old dead cells. The process by which new cells are made is called cell division. Cell division is occurring all the time. Around two trillion cell divisions occur in the average human body every day! Types of Cell Division There are three main types of cell division: binary fission, mitosis, and meiosis. Binary fission is used by simple organisms like bacteria. More complex organisms gain new cells by either mitosis or meiosis. Mitosis Mitosis is used when a cell needs to be replicated into exact copies of itself. Everything in the cell is duplicated. The two new cells have the same DNA, functions, and genetic code. The original cell is called the mother cell and the two new cells are called daughter cells. The full process, or cycle, of mitosis is described in more detail below. Examples of cells that are produced through mitosis include cells in the human body for the skin, blood, and muscles. Cell Cycle for Mitosis Cells go through different phases called the cell cycle. The "normal" state of a cell is called the "interphase". The genetic material is duplicated during the interphase stage of the cell. When a cell gets the signal that it is to duplicate, it will enter the first state of mitosis called the "prophase". Prophase - During this phase the chromatin condenses into chromosomes and the nuclear membrane and nucleolus break down.
    [Show full text]
  • Mitosis Vs. Meiosis
    Mitosis vs. Meiosis In order for organisms to continue growing and/or replace cells that are dead or beyond repair, cells must replicate, or make identical copies of themselves. In order to do this and maintain the proper number of chromosomes, the cells of eukaryotes must undergo mitosis to divide up their DNA. The dividing of the DNA ensures that both the “old” cell (parent cell) and the “new” cells (daughter cells) have the same genetic makeup and both will be diploid, or containing the same number of chromosomes as the parent cell. For reproduction of an organism to occur, the original parent cell will undergo Meiosis to create 4 new daughter cells with a slightly different genetic makeup in order to ensure genetic diversity when fertilization occurs. The four daughter cells will be haploid, or containing half the number of chromosomes as the parent cell. The difference between the two processes is that mitosis occurs in non-reproductive cells, or somatic cells, and meiosis occurs in the cells that participate in sexual reproduction, or germ cells. The Somatic Cell Cycle (Mitosis) The somatic cell cycle consists of 3 phases: interphase, m phase, and cytokinesis. 1. Interphase: Interphase is considered the non-dividing phase of the cell cycle. It is not a part of the actual process of mitosis, but it readies the cell for mitosis. It is made up of 3 sub-phases: • G1 Phase: In G1, the cell is growing. In most organisms, the majority of the cell’s life span is spent in G1. • S Phase: In each human somatic cell, there are 23 pairs of chromosomes; one chromosome comes from the mother and one comes from the father.
    [Show full text]
  • Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication
    Chapter 6: Cell Growth and Reproduction Lesson 6.2: Chromosomes and DNA Replication Cell reproduction involves a series of steps that always begin with the processes of interphase. During interphase the cell’s genetic information which is stored in its nucleus in the form of chromatin, composed of both mitotic and interphase chromosomes molecules of protein complexes and DNA strands that are loosely coiled winds tightly to be replicated. It is estimated that the DNA in human cells consists of approximately three billion nucleotides. If a DNA molecule was stretched out it would measure over 20 miles in length and all of it is stored in the microscopic nuclei of human cells. This lesson will help you to understand how such an enormous amount of DNA is coiled and packed in a complicated yet organized manner. During cell reproduction as a cell gets ready to divide the DNA coils even more into tightly compact structures. Lesson Objectives • Describe the coiled structure of chromosomes. • Understand that chromosomes are coiled structures made of DNA and proteins. They form after DNA replicates and are the form in which the genetic material goes through cell division. • Discover that DNA replication is semi-conservative; half of the parent DNA molecule is conserved in each of the two daughter DNA molecules. • Outline discoveries that led to knowledge of DNA’s structure and function. • Examine the processes of DNA replication. Vocabulary • centromere • double helix • Chargaff’s rules • histones • chromatid • nucleosomes • chromatin • semi-conservative DNA replication • chromosome • sister chromatids • DNA replication • transformation Introduction In eukaryotic cells, the nucleus divides before the cell itself divides.
    [Show full text]
  • The Obscure World of Integrative and Mobilizable Elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget
    The obscure world of integrative and mobilizable elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget To cite this version: Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget. The obscure world of integrative and mobilizable elements: Highly widespread elements that pirate bacterial conjugative systems. Genes, MDPI, 2017, 8 (11), pp.337. 10.3390/genes8110337. hal- 01686871 HAL Id: hal-01686871 https://hal.archives-ouvertes.fr/hal-01686871 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License G C A T T A C G G C A T genes Review The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems Gérard Guédon *, Virginie Libante, Charles Coluzzi, Sophie Payot and Nathalie Leblond-Bourget * ID DynAMic, Université de Lorraine, INRA, 54506 Vandœuvre-lès-Nancy, France; [email protected] (V.L.); [email protected] (C.C.); [email protected] (S.P.) * Correspondence: [email protected] (G.G.); [email protected] (N.L.-B.); Tel.: +33-037-274-5142 (G.G.); +33-037-274-5146 (N.L.-B.) Received: 12 October 2017; Accepted: 15 November 2017; Published: 22 November 2017 Abstract: Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements.
    [Show full text]
  • U6-Life-Cycle-Background.Pdf
    UNIT 6: LIFE CYCLE CORAL REEF ECOLOGY CURRICULUM This unit is part of the Coral Reef Ecology Curriculum that was developed by the Education Department of the Khaled bin Sultan Living Oceans Foundation. It has been designed for secondary school students, but can be adapted for other uses. The entire curriculum can be found online at lof.org/CoralReefCurriculum. Author and Design/Layout: Amy Heemsoth, Director of Education Editorial assistance provided by: Andrew Bruckner, Ken Marks, Melinda Campbell, Alexandra Dempsey, and Liz Rauer Thompson Illustrations by: Amy Heemsoth Cover Photo: ©Michele Westmorland/iLCP ©2014 Khaled bin Sultan Living Oceans Foundation. All rights reserved. Unless otherwise noted, photos are property of the Khaled bin Sultan Living Oceans Foundation. The Khaled bin Sultan Living Oceans Foundation and authors disclaim any liability for injury or damage related to the use of this curriculum. These materials may be reproduced for education purposes. When using any of the materials from this curriculum, please include the following attribution: Khaled bin Sultan Living Oceans Foundation Coral Reef Ecology Curriculum www.lof.org The Khaled bin Sultan Living Oceans Foundation (KSLOF) was incorporated in California as a 501(c)(3), public benefit, Private Operating Foundation in September 2000. The Living Oceans Foundation is dedicated to providing science-based solutions to protect and restore ocean health through research, outreach, and education. The educational goals of the Khaled bin Sultan Living Oceans Foundation and
    [Show full text]
  • Coordinating DNA Replication Initiation with Cell Growth
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12206-12211, October 1996 Biochemistry Coordinating DNA replication initiation with cell growth: Differential roles for DnaA and SeqA proteins (Escherichia coli/initiation mass) ERIK BOYE*t, TROND STOKKE*, NANCY KLECKNERt, AND KIRSTEN SKARSTAD* *Departments of Biophysics and Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway; and tDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 Contributed by Nancy Kleckner, July 25, 1996 ABSTRACT We describe here the development of a new DnaA recognizes oriC specifically and, together with accessory approach to the analysis of Escherichia coli replication con- proteins, promotes the formation of an open complex which trol. Cells were grown at low growth rates, in which case the permits loading of the DnaB helicase and priming of DNA bacterial cell cycle approximates that of eukaryotic cells with replication (4). A second component, SeqA, has been identi- Gl, S, and G2 phases: cell division is followed sequentially by fied genetically as a negative modulator of the initiation a gap period without DNA replication, replication ofthe single process (5). Biochemical data suggest that SeqA mediates its chromosome, another gap period, and finally the next cell effects by binding to oriC prior to initiation (6). division. Flow cytometry of such slowly growing cells reveals The most detailed molecular models of initiation control in the timing of replication initiation as a function of cell mass. E. coli have focused on the DnaA protein. The amount of The data show that initiation is normally coupled to cell DnaA protein per origin (7), the activity of DnaA protein per physiology extremely tightly: the distribution ofindividual cell cell (8), or the concentration of DnaA (9) have been proposed masses at the time of initiation in wild-type cells is very to trigger initiation of DNA replication.
    [Show full text]
  • Genes Controlling Essential Cell-Cycle Functions in Drosophila Melanogaster
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Genes controlling essential cell-cycle functions in Drosophila melanogaster Maurizio Gatti I and Bruce S. Baker 2 ~Dipartimento de Genetica e Biologia Molecolare, Universit/l di Roma 'La Sapienza', 00185 Roma, Italy; 2Department of Biological Sciences, Stanford University, Stanford, California 94305 USA On the basis of the hypothesis that mutants in genes controlling essential cell cycle functions in Drosophila should survive up to the larval-pupal transition, 59 such 'late lethals' were screened for those mutants affecting cell division. Examination of mitosis in brain neuroblasts revealed that 30 of these lethals cause disruptions in mitotic chromosome behavior. These mutants identify genes whose wild-type functions are important for: (1) progression through different steps of interphase, (2) the maintenance of mitotic chromosome integrity, (3) chromosome condensation, (4) spindle formation and/or function, and (5) completion of cytokinesis or completion of chromosome segregation. The presence of mitotic defects in late lethal mutants is correlated tightly with the presence of defective imaginal discs. Thus, the phenotypes of late lethality and poorly developed imaginal discs are together almost diagnostic of mutations in essential cell-cycle functions. The terminal phenotypes exhibited by these Drosophila mitotic mutants are remarkably similar to those observed in mammalian cell-cycle mutants, suggesting that these diverse organisms use a common genetic logic to regulate and integrate the events of the cell cycle. [Key Words: Cell-cycle mutants; Drosophila; mitosis] Received November 30, 1988; revised version accepted February 7, 1989. The exquisitely precise cyclic changes that eukaryotic review, see Simchen 1978; Ling 1981; Oakley 1981; chromosomes and cells undergo during mitotic and Wissmger and Wang 1983; Marcus et al.
    [Show full text]
  • CDP1, a Novel Component of Chloroplast Division Site Positioning System in Arabidopsis
    Cell Research (2009) 19:877-886. © 2009 IBCB, SIBS, CAS All rights reserved 1001-0602/09 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr CDP1, a novel component of chloroplast division site positioning system in Arabidopsis Min Zhang1, Yong Hu1, Jingjing Jia1, Dapeng Li1, Runjie Zhang1, Hongbo Gao2, Yikun He1 1College of Life Science, Capital Normal University, Beijing 100048, China; 2College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China Chloroplasts are plant-specific organelles that evolved from endosymbiotic cyanobacteria. They divide through binary fission. Selection of the chloroplast division site is pivotal for the symmetric chloroplast division. In E. coli, positioning of the division site at the midpoint of the cell is regulated by dynamic oscillation of the Min system, which includes MinC, MinD and MinE. Homologs of MinD and MinE in plants are involved in chloroplast division. The homolog of MinC still has not been identified in higher plants. However, an FtsZ-like protein, ARC3, was found to be involved in chloroplast division site positioning. Here, we report that chloroplast division site positioning 1 (AtCDP1) is a novel chloroplast division protein involved in chloroplast division site placement in Arabidopsis. AtCDP1 was dis- covered by screening an Arabidopsis cDNA expression library in bacteria for colonies with a cell division phenotype. AtCDP1 is exclusively expressed in young green tissues in Arabidopsis. Elongated chloroplasts with multiple division sites were observed in the loss-of-function cdp1 mutant. Overexpression of AtCDP1 caused a chloroplast division phe- notype too. Protein interaction assays suggested that AtCDP1 may mediate the chloroplast division site positioning through the interaction with ARC3.
    [Show full text]
  • Endogenous Retroviruses and the Immune System
    Endogenous Retroviruses and the Immune System George Robert Young Submitted to University College London in part fulfilment of the requirements for the degree of Doctor of Philosophy 2012 Division of Infection and Immunity Division of Immunoregulation University College London National Institute for Medical Research Gower Street The Ridgeway London London WC1E 6BT NW7 1AA 2 I, George Robert Young, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 Abstract ABSTRACT 4 Initial sequencing of the human and mouse genomes revealed that substantial fractions were composed of retroelements (REs) and endogenous retroviruses (ERVs), the latter being relics of ancestral retroviral infection. Further study revealed ERVs constitute up to 10% of many mammalian genomes. Despite this abundance, comparatively little is known about their interactions, beneficial or detrimental, with the host. This thesis details two distinct sets of interactions with the immune system. Firstly, the presentation of ERV-derived peptides to developing lymphocytes was shown to exert a control on the immune response to infection with Friend Virus (FV). A self peptide encoded by an ERV negatively selected a significant fraction of polyclonal FV- specific CD4+ T cells and resulted in an impaired immune response. However, CD4+ T cell-mediated antiviral activity was fully preserved and repertoire analysis revealed a deletional bias according to peptide affinity, resulting in an effective enrichment of high-affinity CD4+ T cells. Thus, ERVs exerted a significant influence on the immune response, a mechanism that may partially contribute to the heterogeneity seen in human immune responses to retroviral infections.
    [Show full text]