Integrated Pest Management (IPM) for Reducing Pesticide Residues in Crops and Natural Resources

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Pest Management (IPM) for Reducing Pesticide Residues in Crops and Natural Resources Integrated Pest Management (IPM) for Reducing Pesticide Residues in Crops and Natural Resources G. V. Ranga Rao, B. Ratna Kumari, K. L. Sahrawat and S. P. Wani Abstract Investigation on the pesticide residues during 2006–2009 in various crops and natural resources (soil and water) in the study village (Kothapally, Telangana State (TS)) indicated the presence of a wide range of insecticidal residues. Pooled data of the 80 food crop and cotton samples, two rice grain samples (3 %) showed beta endosulfan residues, and two (3 %) soil samples showed alpha and beta endosulfan residues. In vegetables of the 75 tomato samples, 26 (35 %) were found contaminated with residues of which 4 % had residues above MRLs. Among the 80 brinjal samples, 46 (56 %) had residues, of these 4 % samples had residues above MRLs. Only 13 soil samples from vegetable fields were found contaminated. The frequency of contamination in brinjal fields was high and none of the pulses and cotton samples revealed any pesticide contamination. IPM fields showed substan- tial reduction sprays which in-turn reflected in lower residues. Initial stud- ies on water analysis indicated the presence of residues in all water sources with higher in bore wells compared to open wells, however, by 2009 the water bodies reflected no residues above the detectable level. Keywords IPM · Natural Resources · Residues productivity on a sustained basis. With the advent Introduction and adoption of improved technologies such as high-yielding crop varieties and the use of fer- Ever increasing demand for food, feed, and fiber, tilizers and pesticides, considerable progress has due to increased population, requires increased been achieved in boosting agricultural produc- tion (Foley 2011). However, during this process of enhancing productivity, the use of agrochemi- G. V. Ranga Rao () · B. R. Kumari · K. L. Sahrawat · cals became an integral part of the present day S. P. Wani agriculture. Globally, approximately 2.5 million International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana State, 502 324 India tons of pesticides are used annually in agricul- e-mail: [email protected] ture. Latest information on pesticide use across A. K. Chakravarthy (ed.), New Horizons in Insect Science: Towards Sustainable Pest Management, 397 DOI 10.1007/978-81-322-2089-3_35, © Springer India 2015 398 G. V. Ranga Rao et al. the world clearly indicated an increase from engineering’, together with genetic improvement about US$7 billion to US$12 billion from 2000 of new crop varieties, will enhance the durability to 2012 with a similar trend across the globe of the pest-resistant cultivars (conventional and (Plumer 2013). GM). The IPM will also promote compatibility Worldwide, approximately 9000 species of with the use of semio-chemicals, bio-pesticides, insects and mites, 50,000 species of plant patho- precision pest monitoring tools, and rapid diag- gens, and 8000 species of weeds damage crops. nostics. These combined strategies are urgently Insect pests cause an estimated loss of 14 %, plant needed; and are best achieved via multi-disci- pathogens cause 13 % loss, and weeds cause plinary research, including complex spatio-tem- another 13 % loss (Pimentel 2009). Pesticides poral modeling at the farm and landscape scales. use is indispensable in agricultural production. Integrative and synergistic use of existing and About one-third of the agricultural products are new IPM technologies will help meet the future produced by using pesticides. Without pesticide food needs more sustainably in the developed application, the loss of fruits, vegetables, and ce- and developing countries. The aim of this chapter reals from pest injury would reach 78, 54, and is to provide further evidence to show that IPM 32 %, respectively 2008). In view of the world’s indeed can reduce pesticide use without sacrific- limited croplands and growing population; it is ing the yields of the major crops studied. necessary to take all measures to increase crop production in order to ensure food safety (Zhang et al. 2011). On the other hand, Knutson and other Status on Pesticide Related Issues researchers pointed out that if the consumption of pesticides is prohibited, the food production in There have been many studies on determining the USA would drop sharply and the food prices the ill effects of pesticide exposure (McCauley would soar. et al. 2006). The World Health Organization and Drivers of food security and crop protection the UN Environment Programme estimate that issues are discussed relative to food losses caused each year, 3 million farm workers in the develop- by pests. Insect pests globally consume food es- ing world experience severe pesticide poisoning timated to feed an additional one billion people. of whom about 18,000 were fatal (Miller 2004). Key drivers include rapid human population in- A study with 23 school children who were shifted crease, climate variability, loss of beneficial on- to organic food from normal diet, a dramatic re- farm biodiversity, reduction in per capita cropped duction in the levels of organo-phosphorus pes- land, and water shortages. The use of integrated ticides in their system was observed (Lu et al. pest management (IPM) in agriculture is urgently 2006). needed, and is also being widely adopted glob- Excessive and non-judicious use of insecti- ally. IPM offers a ‘toolbox’ of complementary cides has led to the degradation of environmental crop- and region-specific crop protection solu- quality, pest resistance, pest resurgence and the tions to address these rising pressures. IPM aims contamination of agricultural products and natu- for more sustainable solutions by using comple- ral resources. Most of the studies on pesticides mentary technologies. The applied research chal- conducted in Asia reflect the presence of pesti- lenge now is to reduce selection pressure on sin- cide residues in significant amounts in food and gle solution strategies, by creating additive/syn- agricultural commodities, and pesticide pollution ergistic interactions between IPM components. does exist in the country; and is a cause of con- IPM is compatible with organic, conventional, cern for public health (Kumari et al. 2002, 2003, and genetically modified (GM) cropping systems 2004, 2005, 2006). Pesticides applied to the soil and is flexible, allowing regional fine-tuning. It or that eventually end in the soil in agricultur- reduces the pest levels below economic thresh- al areas can contribute to the contamination of olds utilizing key ‘ecological services’, particu- surface and ground waters (Gilliom et al. 2006; larly bio-control. Landscape scale ‘ecological McMahon et al. 2006). Integrated Pest Management (IPM) for Reducing Pesticide Residues in Crops and Natural Resources 399 Information from India showed that about eco-preservation and human health as well. The 51 % of the food material is contaminated with necessity of pesticide residue analysis in vari- residues in comparison to 21 % worldwide, of ous agro-based commodities has become more which 20 % were above MRL prescribed by FAO relevant in the present context. Implementation standards (Anon 1999). The contaminated food is of IPM strategies will help to reduce the depen- generally not discarded in the developing coun- dence on toxic pesticides associated with agricul- tries, but enters the food chain out of ignorance, ture to enhance productivity of healthy products innocence and equally importantly out of lack of and profitability. affordability by the consumers. Lack of aware- The chemical residues from the soil find their ness of the consequence of pesticide- contaminat- way to the aquatic systems or get accumulated in ed food could be one of the reasons for increased the plant products (grain, root, stem etc.). Farmer incidences of cancers in developing world. Be- field schools organized in India on cotton situa- sides the damage to human health, an indiscrimi- tion brought out the importance of IPM in reduc- nate use of chemical pesticides adversely affects ing pesticide-induced risks at the farm level with- the natural bio-diversity that results in the reduc- out sacrificing the yields (Mancini 2006). The tion of natural enemies (Ranga Rao et al. 2005). constraints in the adoption of protective clothing Exposure of humans to the hazardous chemi- in tropics were discussed by Kishi (2005). cals directly in the fields and indirectly through contaminated diet resulted in the occurrence of residues of organo-chlorines in human blood Integrated Pest Management (IPM) (3.3–6.3 mg per L) and milk (3.2–4.6 mg per L) samples from lactating women. High levels of Globally, there is an increasing pressure on the pesticide residues (15–605 times) were observed agriculture sector to produce more food to meet in blood samples of cotton farmers from four vil- increased demand of the growing populations all lages in Punjab (Anon, 2005). In the past few around the world. This has increased the need decades with the benefits of synthetic pesticides for intensive plant protection with increased use being clearly recognized, the usage has steadily of pesticides, leading to complex environmental increased from 2.2 g ha−1 active ingredient (a.i.) implications. Several national and international in 1950 (David 1995) to 381 g ha−1 by 2007 i.e., agencies and nongovernmental organizations are about 270- fold increase (Anon 2009). presently engaged in supporting research and the Various inappropriate practices in the use of use of eco-friendly approaches for crop protec- pesticides cause possible poisoning symptoms tion practices for the sustainable environment. generally among farmers who do not wear pro- The basic concept of IPM is the containment tective clothing (Ntow et al. 2006). Perceptions of pests below economically damaging levels, by farmers of pesticide efficacy were found to using a combination of control measures. Two play a major role in farmers’ behavior towards fundamental principles are: (1) that as individual the use of pesticides and the adoption of alterna- pest control methods are often not successful tive methods of pest control such as IPM (Hash- alone and (2) that pests only need to be managed emi and Damalas 2010).
Recommended publications
  • Rachel Carson for SILENT SPRING
    Silent Spring THE EXPLOSIVE BESTSELLER THE WHOLE WORLD IS TALKING ABOUT RACHEL CARSON Author of THE SEA AROUND US SILENT SPRING, winner of 8 awards*, is the history making bestseller that stunned the world with its terrifying revelation about our contaminated planet. No science- fiction nightmare can equal the power of this authentic and chilling portrait of the un-seen destroyers which have already begun to change the shape of life as we know it. “Silent Spring is a devastating attack on human carelessness, greed and irresponsibility. It should be read by every American who does not want it to be the epitaph of a world not very far beyond us in time.” --- Saturday Review *Awards received by Rachel Carson for SI LENT SPRING: • The Schweitzer Medal (Animal Welfare Institute) • The Constance Lindsay Skinner Achievement Award for merit in the realm of books (Women’s National Book Association) • Award for Distinguished Service (New England Outdoor Writers Association) • Conservation Award for 1962 (Rod and Gun Editors of Metropolitan Manhattan) • Conservationist of the Year (National Wildlife Federation) • 1963 Achievement Award (Albert Einstein College of Medicine --- Women’s Division) • Annual Founders Award (Isaak Walton League) • Citation (International and U.S. Councils of Women) Silent Spring ( By Rachel Carson ) • “I recommend SILENT SPRING above all other books.” --- N. J. Berrill author of MAN’S EMERGING MIND • "Certain to be history-making in its influence upon thought and public policy all over the world." --Book-of-the-Month Club News • "Miss Carson is a scientist and is not given to tossing serious charges around carelessly.
    [Show full text]
  • FAO Manual on the Submission and Evaluation of Pesticide Residues Data
    ISSNISSN 0259-2517 1020-055X 225 ESTUDIO FAOFAO Biotecnología agrícola INVESTIGACIÓNPLANT YPRODUCTION TECNOLOGIA Submission and evaluation of pesticide residues data for estima para países en desarrollo AND PROTECTION PAPER8 Resultados de un foro electrónico 225 Submission and evaluation En esta publicación se presenta un informe sobre las primeras seis conferencias mediante correo electrónico The firstorganizadas version of por this el manualForo electrónico on the submissionde la FAO sobre and la evaluation biotecnología of pesticideen la alimentación residues y datala agricultura, for of pesticide residues data estimationcelebradas of maximum entre marzo residue de 2000 levels y mayo in de food 2001. and Todas feed las was conferencias printed by contaron FAO in con1997 un as moderador, a working duraron documentaproximadamente with the dos aim meses of consolidating y se centraron the en proceduresla biotecnología used agrícola by the en FAO los Panelpaíses ofen experts desarrollo. on Las cuatro pesticideprimeras residues. conferencias The trataron FAO Manual de la idoneidad was revised para in los 2002 países and en indesarrollo 2009 incorporated de las biotecnologías additional actualmente for the estimation of informationdisponibles from enthe los JMPR sectores Report agrícola, of 1997-2009. pesquero, forestalSince then y ganadero. there have Las otras been dos many conferencias developments trataron in de las the scientificrepercusiones evaluation de process la biotecnología of the Joint agrícola Meeting sobre onel hambre Pesticide y la Residues seguridad (JMPR), alimentaria administered en los países by en FAO anddesarrollo the Wor y lasld Healthconsecuencias Organization. de los derechos The present de propiedad manual intelectual incorporates en la all alimentación relevant information y la agricultura en maximum residue levels and principles that are currently used by the JMPResos to países.
    [Show full text]
  • Decision Guidance Documents
    OPERATION OF THE PRIOR INFORMED CONSENT PROCEDURE FOR BANNED OR SEVERELY RESTRICTED CHEMICALS IN INTERNATIONAL TRADE DECISION GUIDANCE DOCUMENTS Methyl parathion (emulsifiable concentrates at or above 19.5% active ingredient and dusts at or above 1.5% active ingredient). JOINT FAO/UNEP PROGRAMME FOR THE OPERATION OF PRIOR INFORMED CONSENT United Nations Environment Programme UNEP Food and Agriculture Organization of the United Nations OPERATION OF THE PRIOR INFORMED CONSENT PROCEDURE FOR BANNED OR SEVERELY RESTRICTED CHEMICALS IN INTERNATIONAL TRADE DECISION GUIDANCE DOCUMENTS Methyl parathion (emulsifiable concentrates at or above 19.5% active ingredient and dusts at or above 1.5% active ingredient). JOINT FAO/UNEP PROGRAMME FOR THE OPERATION OF PRIOR INFORMED CONSENT Food and Agriculture Organization of the United Nations United Nations Environment Programme Rome - Geneva 1991; amended 1996 DISCLAIMER The inclusion of these chemicals in the Prior Informed Consent Procedure is based on reports of control action submitted to the United Nations Environment Programme (UNEP) by participating countries, and which are presently listed in the UNEP-International Register of Potentially Toxic Chemicals (IRPTC) database on Prior Informed Consent. While recognizing that these reports from countries are subject to confirmation, the FAO/UNEP Joint Working Group of Experts on Prior Informed Consent has recommended that these chemicals be included in the Procedure. The status of these chemicals will be reconsidered on the basis of such new notifications as may be made by participating countries from time to time. The use of trade names in this document is primarily intended to facilitate the correct identification of the chemical. It is not intended to imply approval or disapproval of any particular company.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Factors Associated with Practice of Chemical Pesticide Useand Acute
    International Journal of Environmental Research and Public Health Article Factors Associated with Practice of Chemical Pesticide Use and Acute Poisoning Experienced by Farmers in Chitwan District, Nepal Simrin Kafle 1,*, Abhinav Vaidya 1, Bandana Pradhan 2 , Erik Jørs 3 and Sharad Onta 1 1 Nepal Public Health Foundation, Kathmandu 44600, Nepal; [email protected] or [email protected] (A.V.); [email protected] or [email protected] (S.O.) 2 Institute of Medicine, Tribhuwan University, Kathmandu 44600, Nepal; [email protected] 3 Clinic of Occupational Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark; [email protected] or [email protected] * Correspondence: simrinkafl[email protected] or simrin_kafl[email protected]; Tel.: +97-798-4964-3266 Abstract: In view of increasing irrational use and unsafe handling of pesticides in agriculture in Nepal, a descriptive cross-sectional study was conducted to assess the practice of chemical pesticide use and acute health symptoms experienced by farmers. A total of 790 farmers from the Chitwan district were randomly selected for the study. X2 test, T-test, and Multiple Logistic Regression were used for analysis. Among the farmers, 84% used exclusively chemical pesticide. Farmers with better knowledge on pesticide handling were 8.3 times more likely to practice safe purchasing, four times more likely to practice safe mixing and spraying, and two times more likely to practice safe storage and disposal. Similarly, perception/attitude of farmers about chemical pesticide policy and Citation: Kafle, S.; Vaidya, A.; market management was significantly associated with the practice of farmers during purchasing, Pradhan, B.; Jørs, E.; Onta, S.
    [Show full text]
  • Hidden Trade Costs? Maximum Residue Limits and US Exports Of
    b Assistant Professor, California State University, Chico, College of Agriculture, Chico, CA, Email: [email protected] b Associate Professor and Director, Center for Agricultural Trade, Dept. of Agricultural & Applied Economics, Virginia Tech, Email: [email protected] c Professor and Research Lead, Center for Agricultural Trade, Dept. of Agricultural & Applied Economics, Virginia Tech, Email: [email protected] 1 | P a g e This work was supported by the USDA’s Office of the Chief Economist under project number 58-0111-17-012. However, the views expressed are those of the authors and should not be attributed to the OCE or USDA. 2 | P a g e Contents HIDDEN TRADE COSTS? MAXIMUM RESIDUE LIMITS AND U.S. EXPORTS OF FRESH FRUITS AND VEGETABLES……………………………………………………………………………...1 TABLE OF CONTENTS…………………………………………………………………………………3 ABSTRACT…………………………………………………………………………………………4 I. BACKGROUND………………………………………………………………………………...5 II. MRL POLICY SETTING………………………………………………………………………….9 III. INDICES OF REGULATORY HETEROGENEITY……...…………………………………….11 IV. EMPIRICAL MODEL..……….……………………………………………………………………13 V. DATA…………………………..……………………………………………………………………19 VI. RESULTS………………………..…………………………………………………………………22 OILS, POISSON, AND NEGATIVE BINOMIAL MODEL...........…………………………15 INTENSIVE AND EXTENSIVE MARGINS…………………………………………………17 VII. CONCLUSION…………………………………………………………………………………..…28 VIII. REFERENCES…………….………………………………………………………………………22 TABLES AND FIGURES….……………………………………………………………………………….24 3 | P a g e Hidden Trade Costs? Maximum Residue Limits and US Exports Fresh Fruits and Vegetables Abstract
    [Show full text]
  • Alinorm 01/24
    E REP14/PR JOINT FAO/WHO FOOD STANDARDS PROGRAMME CODEX ALIMENTARIUS COMMISSION 37th Session Geneva, Switzerland, 14 – 18 July 2014 REPORT OF THE 46th SESSION OF THE CODEX COMMITTEE ON PESTICIDE RESIDUES Nanjing, China, 5 - 10 May 2014 Note: This report includes Codex Circular Letter CL 2014/16-PR. E CX 4/40.2 CL 2014/16-PR May 2014 To: - Codex Contact Points - Interested International Organizations From: Secretariat, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, E-mail: [email protected], Viale delle Terme di Caracalla, 00153 Rome, Italy SUBJECT: DISTRIBUTION OF THE REPORT OF THE 46TH SESSION OF THE CODEX COMMITTEE ON PESTICIDE RESIDUES (REP14/PR) The report of the 46th Session of the Codex Committee on Pesticide Residues will be considered by the 37th Session of the Codex Alimentarius Commission (Geneva, Switzerland, 14 – 18 July 2014). PART A: MATTERS FOR ADOPTION BY THE 37TH SESSION OF THE CODEX ALIMENTARIUS COMMISSION: 1. Draft maximum residue limits for pesticides at Step 8 (para 115, Appendix II). 2. Proposed draft maximum residue limits for pesticides at Step 5/8 (with omission of Steps 6/7) (para 115, Appendix III). 3. Proposed draft revision to the Classification of Food and Feed at Step 5 – selected vegetable commodity groups (Group 015 - Pulses) (para 148, Appendix X). 4. Revised Risk Analysis Principles applied by the Codex Committee on Pesticide Residues (para 163, Appendix XIII). Governments and international organizations wishing to submit comments on the above matters, should do so in writing, in conformity with the Procedure for the Elaboration of Codex Standards and Related Texts (Part 3 – Uniform Procedure for the Elaboration of Codex Standards and Related Texts, Procedural Manual of the Codex Alimentarius Commission) by e-mail, to the above address before 20 June 2014.
    [Show full text]
  • NAFTA Guidance Document on Data Requirements for Tolerances on Imported Commodities in the United States and Canada
    NAFTA Guidance Document on Data Requirements for Tolerances on Imported Commodities in the United States and Canada December 2005 US Environmental Protection Agency Office of Pesticide Programs (OPP) Health Canada Pest Management Regulatory Agency (PMRA) TABLE OF CONTENTS I. OBJECTIVE ......................................................................................................................1 II. CURRENT LEGAL FRAMEWORK IN THE UNITED STATES ..............................1 A. The Federal Insecticide, Fungicide and Rodenticide Act and the Federal Food, Drug, and Cosmetic Act..............................................................................1 B. The Food Quality Protection Act of 1996 ............................................................2 III. CURRENT LEGAL FRAMEWORK IN CANADA ......................................................2 A. Pest Control Products Act.....................................................................................2 B. Food and Drugs Act and Regulations ..................................................................2 IV. CURRENT LEGAL FRAMEWORK IN MEXICO.......................................................3 V. IMPORT TOLERANCE DATA REQUIREMENTS FOR THE NAFTA COUNTRIES......................................................................................................................3 A. General Information..............................................................................................3 B. Description of Format and Data Requirements for an Import Tolerance/MRL Petition........................................................................................4
    [Show full text]
  • Glyphosate: Unsafe on Any Plate
    GLYPHOSATE: UNSAFE ON ANY PLATE ALARMING LEVELS OF MONSANTO’S GLYPHOSATE FOUND IN POPULAR AMERICAN FOODS “For the first time in the history of the world, every human being is now subjected to contact with dangerous chemicals from the moment of conception until death…These chemicals are now stored in the bodies of the vast majority of human beings, regardless of age. They occur in the mother’s milk, and probably in the tissues of the unborn child.”1 —RACHEL CARSON, SILENT SPRING “Glyphosate was significantly higher in humans [fed] conventional [food] compared with predominantly organic [fed] humans. Also the glyphosate residues in urine were grouped according to the human health status. Chronically ill humans had significantly higher glyphosate residues in urine than healthy humans”2 —MONIKA KRUGER, ENVIRONMENTAL & ANALYTICAL TOXICOLOGY “Analysis of individual tissues demonstrated that bone contained the highest concentration of [14C] glyphosate equivalents (0.3–31ppm). The remaining tissues contained glyphosate equivalents at a concentration of between 0.0003 and 11 ppm. In the bone and some highly perfused tissues, levels were statistically higher in males than in females.”3 —PESTICIDE RESIDUES IN FOOD, JOINT FAO/WHO MEETING 2004 1 Rachel Carson, Silent Spring, (Houghton Mifflin, 1961), Elixirs of Death, 15-16. 2 Krüger M, Schledorn P, Schrödl W, Hoppe HW, Lutz W, et al. (2014) Detection of Glyphosate Residues in Animals and Humans. J Environ Anal Toxicol 4: 210 3 Residues in Food, 2004, Evaluations Part II, Toxicological, Joint FAO/WHO Meeting on Pesticide Residues. http://apps.who.int/iris/ bitstream/10665/43624/1/9241665203_eng.pdf Contents What Is in This Report? Findings: The first ever independent, FDA-registered laboratory food testing results for glyphosate residues in iconic American food brands finds alarming levels of glyphosate contamination and reveal the inadequacy of current food safety regulations relating to allowable pesticide residues.
    [Show full text]
  • Pesticide Residues in Animal Products
    143 Pesticide Residues in Animal Products ROSCOE H. CARTER, H. V. CLABORN, G. T. WOODARD, AND RAY E. ELY ANIMAL products intended for food cide chemical" means any substance may become contaminated with pesti- which alone, in chemical combination, cide chemicals in a number of ways. or in formulation with one or more DDT and other chlorinated mate- other substances is an economic poison rials are used to control insects on such within the meaning of the Federal forage crops as alfalfa, clover, and Insecticide, Fungicide, and Rodenti- grass and on peas, beans, corn, and cide Act. Raw agricultural commodi- similar crops, of which a part is used ties include fresh fruits and vegetables, as animal feed. Some pest killers, used grains, nuts, eggs, raw milk, meats, and at recommended dosages and in ac- similar agricultural produce. It docs cordance with good agricultural prac- not include foods that have been proc- tices, leave enough residue on forage essed, fabricated, or manufactured by crops so that some is stored in the cooking, freezing, dehydrating, or mill- animal or excreted in milk if the forage ing. is fed to livestock. Pastures or grain Detecting and estimating pesticide that have had pesticide treatments residues in the biological materials by also may be a source of contamination chemical analysis are complicated pro- of animal products. cedures. General methods, such as the DDT—the common name for the determination of the organic chlorine commercial product dichloro-diphenyl- content, are used sometimes to deter- trichloroethane—has been found in mine residues. Specific and spectro- milk samples from cows stabled in photometric methods are available for barns sprayed with it, even though the certain pesticide chemicals.
    [Show full text]
  • Dietary Supplements Stakeholder Forum Michael Mcguffin, Chair Summary Discussions Wednesday, June 1, 2016
    Dietary Supplements Stakeholder Forum Michael McGuffin, Chair Summary Discussions Wednesday, June 1, 2016 What We Heard USP Updates and Discussions—Adulterants Database Stakeholders —consumers, marketers, regulators—will work together to solve the problem caused by adulterated products that masquerade as dietary supplements (DSs). USP should make more clear that tools to detect adulteration by drug spiking are not meant as standards for manufacturers, but rather as tests for regulators in enforcement/forensic actions. There is sensitivity in the industry about screening methods being required as regular tests for GMP compliance. The adulterants database was well received, but stakeholders emphasized that adulteration by ingredient substitution, dilution, and spiking with botanical chemical markers are areas more relevant for the manufacturers than adulteration by drug spiking. 2 What We Heard USP Updates and Discussions—Adulterants Database USP must make the planned database comprehensible, segregating the drug/drug analog tainted products of interest to regulators from the economically motivated adulteration of interest to dietary supplement ingredient purchasers. – Confusion can arise because the adulterants database is perceived as a tool for industry, but in reality it is a tool for regulators, enforcement agencies and forensic laboratories. – Separate section on authentication would highlight the function of the database as a product and ingredient integrity tool manufacturers can use to protect themselves against Economically Motivated Adulteration. Action Item: Attendees interested in participating in beta-testing the USP database will contact Mr. Anton Bzhelyansky ([email protected]). 3 What We Heard USP Updates and Discussions—DNA-based Methods for Botanical Identification DNA testing is an emerging tool of indisputable value.
    [Show full text]
  • Guidance on Pest and Pesticide Management Policy Development
    International Code of Conduct on the Distribution and Use of Pesticides Guidance on Pest and Pesticide Management Policy Development JUNE 2010 The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The participating organizations are the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organization (ILO), the Organisation for Economic Co-operation and Development (OECD), the United Nations Environment Programme (UNEP), the United Nations Industrial Development Organization (UNIDO), the United Nations Institute for Training and Research (UNITAR) and the World Health Organization (WHO). The World Bank and the United Nations Development Programme (UNDP) are observers. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the participating organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC participating organizations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]