Pesticide Residues in Animal Products

Total Page:16

File Type:pdf, Size:1020Kb

Pesticide Residues in Animal Products 143 Pesticide Residues in Animal Products ROSCOE H. CARTER, H. V. CLABORN, G. T. WOODARD, AND RAY E. ELY ANIMAL products intended for food cide chemical" means any substance may become contaminated with pesti- which alone, in chemical combination, cide chemicals in a number of ways. or in formulation with one or more DDT and other chlorinated mate- other substances is an economic poison rials are used to control insects on such within the meaning of the Federal forage crops as alfalfa, clover, and Insecticide, Fungicide, and Rodenti- grass and on peas, beans, corn, and cide Act. Raw agricultural commodi- similar crops, of which a part is used ties include fresh fruits and vegetables, as animal feed. Some pest killers, used grains, nuts, eggs, raw milk, meats, and at recommended dosages and in ac- similar agricultural produce. It docs cordance with good agricultural prac- not include foods that have been proc- tices, leave enough residue on forage essed, fabricated, or manufactured by crops so that some is stored in the cooking, freezing, dehydrating, or mill- animal or excreted in milk if the forage ing. is fed to livestock. Pastures or grain Detecting and estimating pesticide that have had pesticide treatments residues in the biological materials by also may be a source of contamination chemical analysis are complicated pro- of animal products. cedures. General methods, such as the DDT—the common name for the determination of the organic chlorine commercial product dichloro-diphenyl- content, are used sometimes to deter- trichloroethane—has been found in mine residues. Specific and spectro- milk samples from cows stabled in photometric methods are available for barns sprayed with it, even though the certain pesticide chemicals. cows were outside when the spraying The procedures generally require an was done. Enough DDT was picked extraction of the biological product up from feed troughs, water fountains, with an organic solvent, such as Skelly- and other sources to cause excretion in solve B or benzene. These extracts con- the milk. Some other pesticides, sprayed tain fat, glycerides, and other constitu- directly on the animals, have been ex- ents. Because some pesticide materials creted in the milk. are stable toward acids and some are Some of the pesticides used in spray- stable toward alkali treatments, pro- ing and dipping cattle, sheep, goats, cedures using those reagents have been and swine are stored in the animals' developed to break up the glycerides bodies. Some materials have caused without decomposition of the pesticide. serious disturbances and even fatali- Chromatographie procedures have also ties. Others have little apparent effect. been developed to aid in the separation Most of the pesticides used for insect of the pesticide residue from fats, waxes, control are soluble in the fat and are coloring matter, and such materials. stored in the fatty tissues of the animal. Methods of analysis capable of de- Three to four months are required tecting minute amounts have been de- before some of the chemicals are en- veloped so that it is possible to deter- tirely eliminated. mine residues considerably less than Public Law 518 provides for the o. I part per million (p. p. m.) for some establishment of tolerances for pesti- pesticides. cide chemicals in or on raw agricul- Bioassay procedures capable of de- tural commodities. The term ''pesti- termining residues less than o. i p.p.m. 144 Yearbook of Agriculture 1956 of some materials have also been de- with 2.4 pounds of DDT on an acre veloped. They are useful in detecting resulted in milk production containing toxic residues of metabolic products a maximum of lo.i p. p. m. of DDT; that are not detectable by the specific 0.6 pounds of DDT resulted in o.g method for the original toxicant. p. p. m. of DDT in the milk. A comparative study of the effects EXPERIMENTS in which dairy cows of dosage level and various methods of were fed forage that had been treated administration on the concentration with insecticides during the growing of DDT in milk indicated that in- season and other tests in which the cows creasing intakes of DDT as a residue were given oil solutions of the insecti- on hay or in oil solution gave progres- cides in capsules are briefly described. sive increases in the DDT concentra- The insecticides included DDT, BHG tion in the milk in a straight-line (the common name for the technical relation. This straight line had a great- product benzene hexachloridc), lin- er slope for intake as residue over dane, methoxychlor, chlordane, toxa- intake in oil solution. phane, aldrin, dieldrin, heptachlor, and DDT in oil solution and alfalfa con- endrin. taining various amounts of DDT resi- Growing alfalfa was sprayed with the due was fed to dairy calves. DDT in- insecticides at dosages recommended take varied from 0.07 to 2.9 milligrams for insect control. After an interval of 3 per kilogram of body weight, or 2.2 to to 10 days the crop was cut, field cured, 106 p. p. m. of the dry matter con- baled, and stored in barns 6 to 8 sumed. The storage of DDT in the months until used as feed. Normal, body and kidney fat ranged from 2 to healthy milking cows, generally four to 345 P- P- ^-5 ^^^ t^G concentration each test, were fed the hay with a sup- was proportional to the DDT intake. plemental grain ration. The amounts Residues of methoxychlor on alfalfa consumed daily and the milk produc- ranging from 16 to 109 p. p. m, did tion were recorded. not result in detectable amounts in the The tests were generally continued milk. Crystalline methoxychlor admin- 40 to 90 days, or until it was thought istered orally as a lo-percent solution that equilibrium had been established in soybean oil in daily dosages equiva- between intake and excretion of the lent to 2,000 p. p. m. of the feed con- insecticide. After this phase, the cows sumed, or approximately 19 mg. per were given oil solutions of the insecti- kg. of body weight, resulted in detect- cides in capsules at varying levels of in- able amounts of methoxychlor in the take considerably above the levels of milk. intake as residue. Milk samples were Four cows were fed hay containing taken every tenth day for chemical approximately 0.4 p. p. m. of lindane analysis. Since the chlorinated insecti- for 100 days and four cows received hay cides are fat-soluble and are present containing approximately 2.6 p. p. m. only in the butterfat portion of milk, of lindane for 60 days. The concen- butterfat determinations were made on trations of lindane in the milk of these all samples and the results calculated cows ranged from 0.13 to 0.27 p. p. m. and adjusted to a uniform butterfat Two lots of alfalfa hay, which had (FGM) content of 4 percent. Compos- been treated with toxaphene emulsion ite samples of the hay representing every at the rate of i .5 pounds per acre, were 10 days of feeding were analyzed for fed to two sets of three cows each for residue. Milk samples were collected in 150 and 100 days. The average insecti- most instances for some time after in- cide residue on the two lots of hay was secticide intake had been discontinued 81.8 and 31.8 p. p. m., equivalent to to obtain information on the persist- an average daily intake of 1.4 mg. and ence of the materials in the animals. 0.5 mg. per kg. of body weight, re- Alfalfa hay that had been treated spectively. The average toxaphene con- Pesticide Residues in Animal Products 145 tent of the milk from the two sets of when feeding the hay sprayed with 3.8 cows was 0.5 and o. i p. p. m., respec- ounces per acre; from o. 10 to 0.13 mg. tively. Increased dosages of toxaphene per kg. of body weight from the 8- in soybean oil solution resulted in ounce treatment. After the hay feeding increased excretion in the milk. tests, the cows were given increased Two lots of alfalfa hay, which had dosages of heptachlor in a soybean oil been treated with chlordane emulsion solution. No heptachlor was detected at the rates of i and 2 pounds per acre, in the milk of the cows fed the treated were fed to two sets of three cows each hay or given the oil solutions. for 150 and 100 days, respectively. The A metabolic product, heptachlore- average chlordane residue on the two poxide, was detected in the milk from lots of hay was 20.4 and 20.8 p. p. m., cow^s receiving heptachlor at dosages equivalent to an average daily intake of more than i .3 mg. per kg. of body of 0.39 and 0.37 mg. per kg. of body weight. weight, respectively. The average chlor- Two lots of alfalfa hay, w^hich had dane content of the milk from the two been treated with 2.7 ounces and 6.6 sets of cows was 0.2 and o p. p. m., ounces of endrin per acre, were fed to respectively. Increased dosages of chlor- two sets of four cows each for 48 and dane in soybean oil solution resulted in 44 days, respectively. The average increased excretion in the milk. endrin content of the milk was ap- Alfalfa hay that had been sprayed proximately o.i p. p. m.—which is with aldrin at the rate of 3.9 ounces below the sensitivity of the method of per acre was fed to four milk cows for analysis.
Recommended publications
  • Rachel Carson for SILENT SPRING
    Silent Spring THE EXPLOSIVE BESTSELLER THE WHOLE WORLD IS TALKING ABOUT RACHEL CARSON Author of THE SEA AROUND US SILENT SPRING, winner of 8 awards*, is the history making bestseller that stunned the world with its terrifying revelation about our contaminated planet. No science- fiction nightmare can equal the power of this authentic and chilling portrait of the un-seen destroyers which have already begun to change the shape of life as we know it. “Silent Spring is a devastating attack on human carelessness, greed and irresponsibility. It should be read by every American who does not want it to be the epitaph of a world not very far beyond us in time.” --- Saturday Review *Awards received by Rachel Carson for SI LENT SPRING: • The Schweitzer Medal (Animal Welfare Institute) • The Constance Lindsay Skinner Achievement Award for merit in the realm of books (Women’s National Book Association) • Award for Distinguished Service (New England Outdoor Writers Association) • Conservation Award for 1962 (Rod and Gun Editors of Metropolitan Manhattan) • Conservationist of the Year (National Wildlife Federation) • 1963 Achievement Award (Albert Einstein College of Medicine --- Women’s Division) • Annual Founders Award (Isaak Walton League) • Citation (International and U.S. Councils of Women) Silent Spring ( By Rachel Carson ) • “I recommend SILENT SPRING above all other books.” --- N. J. Berrill author of MAN’S EMERGING MIND • "Certain to be history-making in its influence upon thought and public policy all over the world." --Book-of-the-Month Club News • "Miss Carson is a scientist and is not given to tossing serious charges around carelessly.
    [Show full text]
  • FAO Manual on the Submission and Evaluation of Pesticide Residues Data
    ISSNISSN 0259-2517 1020-055X 225 ESTUDIO FAOFAO Biotecnología agrícola INVESTIGACIÓNPLANT YPRODUCTION TECNOLOGIA Submission and evaluation of pesticide residues data for estima para países en desarrollo AND PROTECTION PAPER8 Resultados de un foro electrónico 225 Submission and evaluation En esta publicación se presenta un informe sobre las primeras seis conferencias mediante correo electrónico The firstorganizadas version of por this el manualForo electrónico on the submissionde la FAO sobre and la evaluation biotecnología of pesticideen la alimentación residues y datala agricultura, for of pesticide residues data estimationcelebradas of maximum entre marzo residue de 2000 levels y mayo in de food 2001. and Todas feed las was conferencias printed by contaron FAO in con1997 un as moderador, a working duraron documentaproximadamente with the dos aim meses of consolidating y se centraron the en proceduresla biotecnología used agrícola by the en FAO los Panelpaíses ofen experts desarrollo. on Las cuatro pesticideprimeras residues. conferencias The trataron FAO Manual de la idoneidad was revised para in los 2002 países and en indesarrollo 2009 incorporated de las biotecnologías additional actualmente for the estimation of informationdisponibles from enthe los JMPR sectores Report agrícola, of 1997-2009. pesquero, forestalSince then y ganadero. there have Las otras been dos many conferencias developments trataron in de las the scientificrepercusiones evaluation de process la biotecnología of the Joint agrícola Meeting sobre onel hambre Pesticide y la Residues seguridad (JMPR), alimentaria administered en los países by en FAO anddesarrollo the Wor y lasld Healthconsecuencias Organization. de los derechos The present de propiedad manual intelectual incorporates en la all alimentación relevant information y la agricultura en maximum residue levels and principles that are currently used by the JMPResos to países.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Factors Associated with Practice of Chemical Pesticide Useand Acute
    International Journal of Environmental Research and Public Health Article Factors Associated with Practice of Chemical Pesticide Use and Acute Poisoning Experienced by Farmers in Chitwan District, Nepal Simrin Kafle 1,*, Abhinav Vaidya 1, Bandana Pradhan 2 , Erik Jørs 3 and Sharad Onta 1 1 Nepal Public Health Foundation, Kathmandu 44600, Nepal; [email protected] or [email protected] (A.V.); [email protected] or [email protected] (S.O.) 2 Institute of Medicine, Tribhuwan University, Kathmandu 44600, Nepal; [email protected] 3 Clinic of Occupational Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark; [email protected] or [email protected] * Correspondence: simrinkafl[email protected] or simrin_kafl[email protected]; Tel.: +97-798-4964-3266 Abstract: In view of increasing irrational use and unsafe handling of pesticides in agriculture in Nepal, a descriptive cross-sectional study was conducted to assess the practice of chemical pesticide use and acute health symptoms experienced by farmers. A total of 790 farmers from the Chitwan district were randomly selected for the study. X2 test, T-test, and Multiple Logistic Regression were used for analysis. Among the farmers, 84% used exclusively chemical pesticide. Farmers with better knowledge on pesticide handling were 8.3 times more likely to practice safe purchasing, four times more likely to practice safe mixing and spraying, and two times more likely to practice safe storage and disposal. Similarly, perception/attitude of farmers about chemical pesticide policy and Citation: Kafle, S.; Vaidya, A.; market management was significantly associated with the practice of farmers during purchasing, Pradhan, B.; Jørs, E.; Onta, S.
    [Show full text]
  • NAFTA Guidance Document on Data Requirements for Tolerances on Imported Commodities in the United States and Canada
    NAFTA Guidance Document on Data Requirements for Tolerances on Imported Commodities in the United States and Canada December 2005 US Environmental Protection Agency Office of Pesticide Programs (OPP) Health Canada Pest Management Regulatory Agency (PMRA) TABLE OF CONTENTS I. OBJECTIVE ......................................................................................................................1 II. CURRENT LEGAL FRAMEWORK IN THE UNITED STATES ..............................1 A. The Federal Insecticide, Fungicide and Rodenticide Act and the Federal Food, Drug, and Cosmetic Act..............................................................................1 B. The Food Quality Protection Act of 1996 ............................................................2 III. CURRENT LEGAL FRAMEWORK IN CANADA ......................................................2 A. Pest Control Products Act.....................................................................................2 B. Food and Drugs Act and Regulations ..................................................................2 IV. CURRENT LEGAL FRAMEWORK IN MEXICO.......................................................3 V. IMPORT TOLERANCE DATA REQUIREMENTS FOR THE NAFTA COUNTRIES......................................................................................................................3 A. General Information..............................................................................................3 B. Description of Format and Data Requirements for an Import Tolerance/MRL Petition........................................................................................4
    [Show full text]
  • Guidance on Pest and Pesticide Management Policy Development
    International Code of Conduct on the Distribution and Use of Pesticides Guidance on Pest and Pesticide Management Policy Development JUNE 2010 The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The participating organizations are the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organization (ILO), the Organisation for Economic Co-operation and Development (OECD), the United Nations Environment Programme (UNEP), the United Nations Industrial Development Organization (UNIDO), the United Nations Institute for Training and Research (UNITAR) and the World Health Organization (WHO). The World Bank and the United Nations Development Programme (UNDP) are observers. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the participating organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC participating organizations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Yesterday's Orchard, Today's Home: Legacy Pesticides on Former
    Archival copy. For current version, see: https://catalog.extension.oregonstate.edu/ec1513 Yesterday’s Orchard… Today’s Home Legacy Pesticides on Former Orchard Property D. Stone and K. Anderson EC 1513-E • March 2009 regon has a rich history of orchard cultivation Generally: across the state. Today, orchards continue to • If the property is on current or recent federal or be an important part of Oregon’s economy O state land, it is unlikely to have contained an and contribute to a healthy and balanced diet for the orchard. public. But, with the growth of residential develop- ment,lands that once contained orchards are being • If the property elevation is high (above 3,000 feet), converted into homes and neighborhoods. Because it is unlikely that orchard trees grew there. of the history of pesticide use on orchard crops, there are issues to consider if you are a potential buyer of, If you discover that an orchard was on the property, or currently live in, a home on a former orchard. ask additional questions including: • What years did the orchard operate? In the past, orchard managers typically used pesticides that persisted a very long time in the • Do records of pesticide use exist? environment. Some residues are still found at high • Were pesticides stored on the premises? Is there levels today. The two most common pesticides used any record of a spill, fire, or cleanup? in orchards historically were lead arsenate and DDT. • What is the source of drinking water? If it is a well, These pesticides are no longer registered for use in can you locate a copy of the well log to determine the United States.
    [Show full text]
  • Pesticide Residue on Agriculture Habitat 2020
    Pesticide residue on flowering habitat near crops in rural Minnesota Every plant tested for pesticide residue contained at least 1 pesticide and up to 15 pesticides Flowering nectar and pollen plants were hand collected from 8 different habitat sites adjacent to crops in rural Minnesota: Potato (3 sites in Big Lake, Hastings during 2019), corn (4 sites in Alexandria during 2017), soy (1 site in North Branch during 2019). Leaves and flowers were analyzed for the presence of pesticide residues. Number of wild plant samples possessing a given number of pesticide compound residues. Data labels indicate the number of additional samples for which trace amounts of pesticides were detected. Results: All samples were processed by the USDA AMS Gastonia, NC (2020). Potato samples (n = 30) Soybean samples (n = 6), Corn samples (n = 28). 100% of potato and soy habitat site samples contained pesticides. 40% of corn habitat site samples contained the pesticide atrazine. soybean potato corn ppb trace ppb trace ppb trace Insecticide clothianidin* 0 2 7/3, 3, 4, 4, 4, 8 0 0 Insecticide 4, 4 Neonic 3.7 (+0.17) coumaphos 0 1 0 0 0 0 Insecticide OP lambda 0 0 0 17 0 0 Insecticide Pyrethroid cyhalothrin DDE p,p’ 0 0 0 9 0 0 Insecticide chlorinated hydrocarbon DEET 0 0 2/16, 21 10 0 0 Insecticide 18.5 (+1.77) diflubenzuron 0 0 6/4,4,4,4,4,4 0 0 0 insecticide 4.0 (+0) growth regulator malathion 0 0 11/2040, 4 0 0 insecticide 2550, 27, 3000, 34, 37, 383, 39, 4130, 49, 543 1166.55 (+428.34) novaluron 0 6 18/1050, 4 0 0 insecticide 1110, 116, growth regulator 1190,
    [Show full text]
  • Pesticide Analysis System Brochure
    Pesticide Analysis Guide The U.S. Environmental Protection Agency (USEPA) definition of a pesticide is “any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest”. Pests are defined as “living organisms that occur where they are not wanted or that cause damage to crops or humans or other animals.” Insects, mice and animals, unwanted plants, fungi and microorganisms are cited as examples.1 The USEPA recognizes four classes of chemical pesticides; organophosphorus, organochlorine, carbamate, and pyrethroid pesticides.2 Organophosphorus pesticides irreversibly inactivate the neurotransmitter enzyme aceytlcholinesterase. Organophosphorus pesticides degrade upon exposure to sunlight and air. Commonly used organophosphorus pesticides include; Parathion, Malathion, Chlorpyrifos, and Diazinon. Organochlorine pesticides act by interfering with ion channel receptors in insect neurons. Commonly used organochlorine pesticides include; Heptachlor, Chlordane, Endosulfan, and Mirex. Carbamate pesticides are N-substituted esters of carbamic acid. Carbamates are employed as insecticides, herbicides, and fungicides. Commonly used carbamate pesticides include; Aldicarb, Carbaryl, Carbofuran, Methiocarb, and Methomyl. Pyrethroid pesticides are synthetic analogs of natural pyrethrins from chrysanthemum flowers. Permethrin and Fenvalerate are common pyrethroid pesticides. Pesticide Analysis Methods An extensive list of pesticide analysis methods have been issued by the United States Environmental Protection
    [Show full text]
  • Insecticide and Fungicide Degradation to Meet Mrls of Blueberry Export Markets
    Insecticide and Fungicide Degradation to Meet MRLs of Blueberry Export Markets Joe DeFrancesco Oregon State University North Willamette Research and Extension Center Updated July 10, 2016 Objectives The objective of this project was to conduct a field study with insecticides commonly used for control of spotted wing drosophila (SWD), and fungicides commonly used for Botrytis blight and fruit rot, that would determine pesticide residue levels of blueberry fruit samples at various days after treatment. With such information, a pest management spray regime and use pattern could be developed that results in residue levels acceptable to international trade partners. Impacts and Benefits of this Project Blueberry growers continue to face the challenges of effective pest management in their fields while also attempting to develop a pesticide spray program that will allow them to ship fruit to foreign markets. The arrival of SWD has caused blueberry growers to make more insecticide applications than ever before, with those applications needing to be close to harvest and, in some situations, between harvests. Fungicide applications are also often needed close to harvest and between harvests. As with any commodity, residue levels of blueberry fruit must be below the allowable Maximum Residue Limit (MRL) for a given country, otherwise the shipment can be rejected. Knowing how close to harvest a pesticide can be used without the risk of an MRL violation will help growers develop a pest management strategy and choose the most favorable pesticides for their particular export market. The results of this 3-year study provide the guidance growers need to make prudent pest management decisions, and allow Oregon blueberry exporters to preserve and expand their export markets without fear of an MRL violation.
    [Show full text]
  • Pesticide Residues in Strawberry Fruits Cultivated Under Integrated
    Doi: https://doi.org/10.17584/rcch.2019v13i1.8409 Pesticide residues in strawberry fruits cultivated under integrated pest management and conventional systems in Cundinamarca (Colombia) Residuos de plaguicidas en frutos de fresa cultivados en sistemas de manejo integrado de plagas y convencionales en Cundinamarca (Colombia) DAVID LÓPEZ V.1 MANUEL SÁNCHEZ1 GERHARD FISCHER2, 4 JOHN FABIO ACUÑA3 AQUILES E. DARGHAN1 Strawberry production based on integrated pest management in Sibate (Cundinamarca, Colombia). Photo: G. Fischer ABSTRACT Because of the high susceptibility in strawberry fruits to attacks from pests and diseases, a large amount of pesticides is applied during the crop cycle and harvest period. The improper use of these substances can gen- erate residues in agricultural products that pose a risk to human health. The objective of this study was to determine and compare pesticide residues in strawberry fruits from two different production systems distrib- uted in the main producing areas of the Cundinamarca Department (Colombia). Eight samples of strawberry crops were collected in four producer municipalities (Guasca, Facatativa, Mosquera and Sibate) to compare different systems (conventional production vs. production based on Integrated Pest Management, IPM). Sam- ples with a concentration of 394 molecules were examined using liquid and gas spectrometry. Fischer’s exact test was used to determine the association between the pesticide type and residue level in the fruits, with more insecticide samples that exceeded the permitted threshold than when using fungicides. Twenty-two different molecules were detected in the analyzed samples, with 37 detection events, of which eight were reported in the IPM production systems and 29 in the conventional producers.
    [Show full text]
  • Reducing and Eliminating the Use of Persistent Organic Pesticides
    Reducing and Eliminating the use of Persistent Organic Pesticides Guidance on alternative strategies for sustainable pest and vector management Johan Mörner, Robert Bos and Marjon Fredrix Geneva, 2002 1 Alternatives to POPs pesticides - a guidance document About the authors Johan Mörner (M.Sc. Agronomy of the Swedish University of Agricultural Sciences) has 15 years of experience working with pest management research in Sweden and eight years managing projects on IPM, pesticide safety and alternative control methods in East and southern Africa. He currently works as a consultant on pest and pesticide management issues both in Sweden and abroad. Robert Bos (M.Sc. Medical Biology/M.Sc. Immunology, University of Amsterdam, the Netherlands) joined the World Health Organization in 1981 on assignment in Costa Rica before transferring to the Secretariat of the WHO/FAO/UNEP Panel of Experts on Environmental Management for Vector Control (PEEM) at WHO head- quarters. In his current position of scientist in the Water, Sanitation and Health Unit of WHO he combines responsibilities for PEEM work and for the broader health agenda associated with water resources development and management. Marjon Fredrix (M.Sc. in Tropical Agronomy, Wageningen University, the Nether- lands) presently works for the Global IPM Facility at FAO in Rome. Between 1987 and 1998 she worked for FAO in Algeria, the Philippines and Viet Nam. From 1992 to 1998 she was technical officer for the FAO Intercountry Programme for IPM in South and Southeast Asia, based in Viet Nam. In this period over 300 000 farmers participated in over 11 000 Farmer Field Schools that were organized by the Vietnam IPM programme.
    [Show full text]