1 APPENDIX A: Fundamental Quantities

Total Page:16

File Type:pdf, Size:1020Kb

1 APPENDIX A: Fundamental Quantities 1 APPENDIX A: Fundamental Quantities There are various ways to describe the world in which we live. Some are qualitative and others are quantitative. Qualitative descriptions describe aspects of objects or events such as texture, and use words like `rough', `smooth', ‘flat’ etc. Qualitative descriptions cannot be described numerically. One would not say that you looked tired with a value of 3.0 unless someone had first set up some kind of numerical scale to measure just how tired you were; tiredness is not something we measure quantitatively. On the other hand, length is a dimension that can be described either qualitatively or quantitatively; one can qualitatively describe an object as long, or one can quantitatively describe it as 10 feet in length. All quantitative measurements are made in some kind of unit. Length, for example, can be measured in units of meters, feet, miles, etc. Other fundamental metric units are the kilogram (a measure of mass) and the second (a unit of time). Other units of measurement are combinations of these fundamental units. An example of a combination is velocity, expressed in units of meters per second (m/s) which measures how far something has moved in a given direction over a given period of time. In astronomical studies, one sometimes uses units which express rather large values in the fundamental metric units. An example of this would be the Solar Mass unit (notated as M ). The mass of our Sun is, by definition, one Solar Mass or about 1,900,000,000,000,000,000,000,000,000,000 kilograms. A star with 10 times as much mass can be written as 10 M ; this is clearly more convenient to write than a number with all those zeros! Other units used in astronomy are the light year (ly), parsec (pc), and the astronomical unit (A.U.), all of which are units of distance. The unit you choose to use depends on the situation, and personal preferences. When describing distances in the solar system the astronomical unit is typically used since it is the average distance from the Sun to the Earth. In describing distances to stars the parsec or light year is usually used. As described in the introductory lab, the metric system allows easy expression of large multiples of the fundamental units via prefixes. For example, 1,000 meters is called a kilo- meter and is usually written as 1km. As described in section 1.4 scientists also use a notation system called scientific notation for representing very large or very small numbers without having to write lots of digits. As an example of how large numbers can get in science let's look at the mass of Mars. Using Kepler's laws of motion to study Mars' moons, astronomers have determined that Mars has a mass approximately equal to 640,000,000,000,000,000,000,000 kilograms. Now you can see that it is rather inconvenient to write down all those zeroes, and it is confusing to use the prefixes above. Imagine how much more mass there is in the Galaxy and you can see that we need an easy way to write very big (or very small) numbers. This leads us to the concept of Scientific Notation. 1 2 APPENDIX B: Accuracy and Significant Digits The number of significant digits in a number is the number of non-zero digits in the number. For example, the number 12.735 has five significant digits; the number 100 has 1. When computing numbers, people today often use calculators since they give us precise answers quickly. Unfortunately, many times they give us answers that are unnecessarily and some- times unrealistically precise. In other words, they give us as many significant digits as can fit on the calculator screen. In most cases, you will not know the numbers you are plugging in to the calculator to this precise of a value, and therefore will get an answer that has too many significant digits to be correct. This will be the case for your astronomy labs this semester. In general, you should only report the accuracy of a calculation with the number of significant digits of the least certain (smallest number of significant digits) of any of the numbers which were the input into the calculation. For example, if you are dividing 13.2 by 6.8, although your calculator gives 1.94117647, you should only report two significant figures (i.e. 1.9), since that is the number of significant figures in the input number 6.8. 2 3 APPENDIX C: Unit Conversions Very often, scientists convert numbers from one set of units to another. In fact, not only do scientists do this, but you do it as well! For example, if someone asks you how tall you are, you could tell them your height in feet or even in inches. If someone said they are 72 inches tall, and 12 inches equals 1 foot, then you know they are 6 feet tall! This is nothing more than a simple conversion from units of inches to units of feet. Another everyday unit conversion is from minutes to hours, and vice versa. If it takes you 30 minutes to drive from Las Cruces to Anthony, then it takes you 0.5 hours. We know this because 60 minutes are equal to 1 hour. However, how can we write these unit conversions, with all the steps, so that we are sure we are converting units correctly (especially when the units are foreign to us (i.e. parsecs, AU, etc.))? Let us begin with our everyday conversion of inches to feet. Say a person informs you that they are 72 inches tall and you want to know how many feet tall they are. First, we need to know the unit conversion from inches to feet (12 inches = 1 foot). We then write the following equation: 1 foot 72 inches × = 6 feet (1) 12 inches Note how the inches units cancel (one in the numerator and one in the denominator) and the units which remain are feet. As for the mathematics, simply use normal rules of division (72/12 = 6) and you wind up with the correct result. The second example, minutes to hours, can be performed using the method above, but what if someone asked you how many days there are in 30 minutes? You will need to use 2 unit conversions to do this (60 minutes = 1 hours, 24 hours = 1 day). Here is how you may perform the unit conversion: 1 hour 1 day 30 minutes × × ≈ 0:0208 days = 2:08 × 10−2 days (2) 60 minutes 24 hours Again, note that the minute units have cancelled as well as the hour units, leaving only days. You have now seen how to perform single and multiple unit conversions. The key to performing these correctly is to 1) make sure you have all the conversion factors you need, 2) write out all of the steps and make sure the units cancel, and 3) think about your final result and ask whether the final result makes sense (is 30 minutes a small fraction of a day? Does 72 inches equal 6 feet?). 3 4 APPENDIX D: Uncertainties and Errors A very important concept in science is the idea of uncertainties and errors. Whenever measurements are made, they are never made absolutely perfectly. For example, when you measure your height, you probably measure it only to roughly the nearest tenth of an inch or so. No one says they are exactly 71.56789123 inches tall, for example, because they don't make the measurement this accurately. Similarly, if someone says they are 71 inches tall, we don't really know that they are exactly 71 inches tall; they may, for example, be 71.002 inches tall, but their measurement wasn't accurate enough to draw this distinction. In astronomy, since the objects we study are so far away, measurements can be very hard to make. As a result, the uncertainties of the measurements can be quite large. For example, astronomers are still trying to refine measurements of the distance to the nearest galaxy. At the current time, we think the distance is about 160,000 light years, but the uncertainty in this measurement is something like 20,000 light years, so the true distance may be as little as 140,000 light years or as much as 180,000 light years. When you do science, you have to always assess the errors on your measurements. 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21.
Recommended publications
  • Quantity Symbol Value One Astronomical Unit 1 AU 1.50 × 10
    Quantity Symbol Value One Astronomical Unit 1 AU 1:50 × 1011 m Speed of Light c 3:0 × 108 m=s One parsec 1 pc 3.26 Light Years One year 1 y ' π × 107 s One Light Year 1 ly 9:5 × 1015 m 6 Radius of Earth RE 6:4 × 10 m Radius of Sun R 6:95 × 108 m Gravitational Constant G 6:67 × 10−11m3=(kg s3) Part I. 1. Describe qualitatively the funny way that the planets move in the sky relative to the stars. Give a qualitative explanation as to why they move this way. 2. Draw a set of pictures approximately to scale showing the sun, the earth, the moon, α-centauri, and the milky way and the spacing between these objects. Give an ap- proximate size for all the objects you draw (for example example next to the moon put Rmoon ∼ 1700 km) and the distances between the objects that you draw. Indicate many times is one picture magnified relative to another. Important: More important than the size of these objects is the relative distance between these objects. Thus for instance you may wish to show the sun and the earth on the same graph, with the circles for the sun and the earth having the correct ratios relative to to the spacing between the sun and the earth. 3. A common unit of distance in Astronomy is a parsec. 1 pc ' 3:1 × 1016m ' 3:3 ly (a) Explain how such a curious unit of measure came to be defined. Why is it called parsec? (b) What is the distance to the nearest stars and how was this distance measured? 4.
    [Show full text]
  • 2. Astrophysical Constants and Parameters
    2. Astrophysical constants 1 2. ASTROPHYSICAL CONSTANTS AND PARAMETERS Table 2.1. Revised May 2010 by E. Bergren and D.E. Groom (LBNL). The figures in parentheses after some values give the one standard deviation uncertainties in the last digit(s). Physical constants are from Ref. 1. While every effort has been made to obtain the most accurate current values of the listed quantities, the table does not represent a critical review or adjustment of the constants, and is not intended as a primary reference. The values and uncertainties for the cosmological parameters depend on the exact data sets, priors, and basis parameters used in the fit. Many of the parameters reported in this table are derived parameters or have non-Gaussian likelihoods. The quoted errors may be highly correlated with those of other parameters, so care must be taken in propagating them. Unless otherwise specified, cosmological parameters are best fits of a spatially-flat ΛCDM cosmology with a power-law initial spectrum to 5-year WMAP data alone [2]. For more information see Ref. 3 and the original papers. Quantity Symbol, equation Value Reference, footnote speed of light c 299 792 458 m s−1 exact[4] −11 3 −1 −2 Newtonian gravitational constant GN 6.674 3(7) × 10 m kg s [1] 19 2 Planck mass c/GN 1.220 89(6) × 10 GeV/c [1] −8 =2.176 44(11) × 10 kg 3 −35 Planck length GN /c 1.616 25(8) × 10 m[1] −2 2 standard gravitational acceleration gN 9.806 65 m s ≈ π exact[1] jansky (flux density) Jy 10−26 Wm−2 Hz−1 definition tropical year (equinox to equinox) (2011) yr 31 556 925.2s≈ π × 107 s[5] sidereal year (fixed star to fixed star) (2011) 31 558 149.8s≈ π × 107 s[5] mean sidereal day (2011) (time between vernal equinox transits) 23h 56m 04.s090 53 [5] astronomical unit au, A 149 597 870 700(3) m [6] parsec (1 au/1 arc sec) pc 3.085 677 6 × 1016 m = 3.262 ...ly [7] light year (deprecated unit) ly 0.306 6 ..
    [Show full text]
  • Units, Conversations, and Scaling Giving Numbers Meaning and Context Author: Meagan White; Sean S
    Units, Conversations, and Scaling Giving numbers meaning and context Author: Meagan White; Sean S. Lindsay Version 1.3 created August 2019 Learning Goals In this lab, students will • Learn about the metric system • Learn about the units used in science and astronomy • Learn about the units used to measure angles • Learn the two sky coordinate systems used by astronomers • Learn how to perform unit conversions • Learn how to use a spreadsheet for repeated calculations • Measure lengths to collect data used in next week’s lab: Scienctific Measurement Materials • Calculator • Microsoft Excel • String as a crude length measurement tool Pre-lab Questions 1. What is the celestial analog of latitude and longitude? 2. What quantity do the following metric prefixes indicate: Giga-, Mega-, kilo-, centi-, milli-, µicro-, and nano? 3. How many degrees is a Right Ascension “hour”; How many degrees are in an arcmin? Arcsec? 4. Use the “train-track” method to convert 20 ft to inches. 1. Background In any science class, including astronomy, there are important skills and concepts that students will need to use and understand before engaging in experiments and other lab exercises. A broad list of fundamental skills developed in today’s exercise includes: • Scientific units used throughout the international science community, as well as units specific to astronomy. • Unit conversion methods to convert between units for calculations, communication, and conceptualization. • Angular measurements and their use in astronomy. How they are measured, and the angular measurements specific to astronomy. This is important for astronomers coordinate systems, i.e., equatorial coordinates on the celestial sphere. • Familiarity with spreadsheet programs, such as Microsoft Excel, Google Sheets, or OpenOffice.
    [Show full text]
  • Lecture 3 - Minimum Mass Model of Solar Nebula
    Lecture 3 - Minimum mass model of solar nebula o Topics to be covered: o Composition and condensation o Surface density profile o Minimum mass of solar nebula PY4A01 Solar System Science Minimum Mass Solar Nebula (MMSN) o MMSN is not a nebula, but a protoplanetary disc. Protoplanetary disk Nebula o Gives minimum mass of solid material to build the 8 planets. PY4A01 Solar System Science Minimum mass of the solar nebula o Can make approximation of minimum amount of solar nebula material that must have been present to form planets. Know: 1. Current masses, composition, location and radii of the planets. 2. Cosmic elemental abundances. 3. Condensation temperatures of material. o Given % of material that condenses, can calculate minimum mass of original nebula from which the planets formed. • Figure from Page 115 of “Physics & Chemistry of the Solar System” by Lewis o Steps 1-8: metals & rock, steps 9-13: ices PY4A01 Solar System Science Nebula composition o Assume solar/cosmic abundances: Representative Main nebular Fraction of elements Low-T material nebular mass H, He Gas 98.4 % H2, He C, N, O Volatiles (ices) 1.2 % H2O, CH4, NH3 Si, Mg, Fe Refractories 0.3 % (metals, silicates) PY4A01 Solar System Science Minimum mass for terrestrial planets o Mercury:~5.43 g cm-3 => complete condensation of Fe (~0.285% Mnebula). 0.285% Mnebula = 100 % Mmercury => Mnebula = (100/ 0.285) Mmercury = 350 Mmercury o Venus: ~5.24 g cm-3 => condensation from Fe and silicates (~0.37% Mnebula). =>(100% / 0.37% ) Mvenus = 270 Mvenus o Earth/Mars: 0.43% of material condensed at cooler temperatures.
    [Show full text]
  • Hertzsprung-Russell Diagram
    Hertzsprung-Russell Diagram Astronomers have made surveys of the temperatures and luminosities of stars and plot the result on H-R (or Temperature-Luminosity) diagrams. Many stars fall on a diagonal line running from the upper left (hot and luminous) to the lower right (cool and faint). The Sun is one of these stars. But some fall in the upper right (cool and luminous) and some fall toward the bottom of the diagram (faint). What can we say about the stars in the upper right? What can we say about the stars toward the bottom? If all stars had the same size, what pattern would they make on the diagram? Masses of Stars The gravitational force of the Sun keeps the planets in orbit around it. The force of the Sun’s gravity is proportional to the mass of the Sun, and so the speeds of the planets as they orbit the Sun depend on the mass of the Sun. Newton’s generalization of Kepler’s 3rd law says: P2 = a3 / M where P is the time to orbit, measured in years, a is the size of the orbit, measured in AU, and M is the sum of the two masses, measured in solar masses. Masses of stars It is difficult to see planets orbiting other stars, but we can see stars orbiting other stars. By measuring the periods and sizes of the orbits we can calculate the masses of the stars. If P2 = a3 / M, M = a3 / P2 This mass in the formula is actually the sum of the masses of the two stars.
    [Show full text]
  • Distances in the Solar System Are Often Measured in Astronomical Units (AU). One Astronomical Unit Is Defined As the Distance from Earth to the Sun
    Distances in the solar system are often measured in astronomical units (AU). One astronomical unit is defined as the distance from Earth to the Sun. 1 AU equals about 150 million km (93 million miles). Table below shows the distance from the Sun to each planet in AU. The table shows how long it takes each planet to spin on its axis. It also shows how long it takes each planet to complete an orbit. Notice how slowly Venus rotates! A day on Venus is actually longer than a year on Venus! Distances to the Planets and Properties of Orbits Relative to Earth's Orbit Average Distance Length of Day (In Earth Length of Year (In Earth Planet from Sun (AU) Days) Years) Mercury 0.39 AU 56.84 days 0.24 years Venus 0.72 243.02 0.62 Earth 1.00 1.00 1.00 Mars 1.52 1.03 1.88 Jupiter 5.20 0.41 11.86 Saturn 9.54 0.43 29.46 Uranus 19.22 0.72 84.01 Neptune 30.06 0.67 164.8 The Role of Gravity Planets are held in their orbits by the force of gravity. What would happen without gravity? Imagine that you are swinging a ball on a string in a circular motion. Now let go of the string. The ball will fly away from you in a straight line. It was the string pulling on the ball that kept the ball moving in a circle. The motion of a planet is very similar to the ball on a strong.
    [Show full text]
  • Measuring the Astronomical Unit from Your Backyard Two Astronomers, Using Amateur Equipment, Determined the Scale of the Solar System to Better Than 1%
    Measuring the Astronomical Unit from Your Backyard Two astronomers, using amateur equipment, determined the scale of the solar system to better than 1%. So can you. By Robert J. Vanderbei and Ruslan Belikov HERE ON EARTH we measure distances in millimeters and throughout the cosmos are based in some way on distances inches, kilometers and miles. In the wider solar system, to nearby stars. Determining the astronomical unit was as a more natural standard unit is the tUlronomical unit: the central an issue for astronomy in the 18th and 19th centu· mean distance from Earth to the Sun. The astronomical ries as determining the Hubble constant - a measure of unit (a.u.) equals 149,597,870.691 kilometers plus or minus the universe's expansion rate - was in the 20th. just 30 meters, or 92,955.807.267 international miles plus or Astronomers of a century and more ago devised various minus 100 feet, measuring from the Sun's center to Earth's ingenious methods for determining the a. u. In this article center. We have learned the a. u. so extraordinarily well by we'll describe a way to do it from your backyard - or more tracking spacecraft via radio as they traverse the solar sys­ precisely, from any place with a fairly unobstructed view tem, and by bouncing radar Signals off solar.system bodies toward the east and west horizons - using only amateur from Earth. But we used to know it much more poorly. equipment. The method repeats a historic experiment per­ This was a serious problem for many brancht:s of as­ formed by Scottish astronomer David Gill in the late 19th tronomy; the uncertain length of the astronomical unit led century.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Lesson 3 – Understanding Distance in Space (Optional)
    Lesson 3 – Understanding Distance in Space (optional) Background The distance between objects in space is vast and very difficult for most children to grasp. The values for these distances are cumbersome for astronomers and scientists to manipulate. Therefore, scientists use a unit of measurement called an astronomical unit. An astronomical unit is the average distance between the Earth and the Sun – 150 million kilometers. Using a scale model to portray the distances of the planets will help the students begin to understand the vastness of space. Astronomers soon found that even the astronomical unit was not large enough to measure the distance of objects outside of our solar system. For these distances, the parsec is used. A parsec is a unit of light-years. A parsec equals approximately 3.3 light-years. (Keep in mind that a light-year is the distance light travels in one year – 9.5 trillion km – and that light travels 300,000 km per second!) Teacher Notes and Hints Prior to lesson • Discuss and review measuring length or distance. How far is one meter? • Discuss the use of prefixes that add or subtract to “basic” units of length. Example: meter is the basic metric unit for length “kilo” means 1000 – kilometer is 1000 meters “centi” means 1/100 – centimeter is 1/100 of a meter Adapt the discussion for grade level. For example, fifth graders can learn the metric prefixes for more “lengths” and may add to decimal work in math class: Kilo – 1000 Hecto – 100 Deka – 10 Deci – 1/10 (0.1) Centi – 1/100 (0.01) Milli – 1/1000 (0.001) • When discussing kilometers, it is helpful to know the number of km’s to local places (for example, kilometers to the Mall).
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • ASTRONOMY 220C ADVANCED STAGES of STELLAR EVOLUTION and NUCLEOSYNTHESIS Spring, 2015
    ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS Spring, 2015 http://www.ucolick.org/~woosley This is a one quarter course dealing chiefly with: a) Nuclear astrophysics and the relevant nuclear physics b) The evolution of massive stars - especially their advanced stages c) Nucleosynthesis – the origin of each isotope in nature d) Supernovae of all types e) First stars, ultraluminous supernovae, subluminous supernovae f) Stellar mass high energy transients - gamma-ray bursts, novae, and x-ray bursts. Our study of supernovae will be extensive and will cover not only the mechanisms currently thought responsible for their explosion, but also their nucleosynthesis, mixing, spectra, compact remnants and light curves, the latter having implications for cosmology. The student is expected to be familiar with the material presented in Ay 220A, a required course in the UCSC graduate program, and thus to already know the essentials of stellar evolution, as well as basic quantum mechanics and statistical mechanics. The course material is extracted from a variety of sources, much of it the results of local research. It is not contained, in total, in any one or several books. The powerpoint slides are on the web, but you will need to come to class. A useful textbook, especially for material early in the course, is Clayton’s, Principles of Stellar Evolution and Nucleosynthesis. Also of some use are Arnett’s Supernovae and Nucleosynthesis (Princeton) and Kippenhahn and Weigert’s Stellar Evolution and Nucleosynthesis (Springer Verlag). Course performance will be based upon four graded homework sets and an in-class final examination. The anticipated class material is given, in outline form, in the following few slides, but you can expect some alterations as we go along.
    [Show full text]
  • IAU 2012 Resolution B2
    RESOLUTION B2 on the re-definition of the astronomical unit of length. Proposed by the IAU Division I Working Group Numerical Standards and supported by Division I The XXVIII General Assembly of International Astronomical Union, noting 1. that the International Astronomical Union (IAU) 1976 System of Astronomical Constants specifies the units for the dynamics of the solar system, including the day (D=86400 s), the mass of the Sun, MS, and the astronomical unit of length or simply the astronomical unit whose definitioni is based on the value of the Gaussian gravitational constant, 2. that the intention of the above definition of the astronomical unit was to provide accurate distance ratios in the solar system when distances could not be estimated with high accuracy, 3. that, to calculate the solar mass parameter, GMS, previously known as the heliocentric gravitation constant, in Système International (SI) unitsii,the Gaussian gravitational constant k, is used, along with an astronomical unit determined observationally, 4. that the IAU 2009 System of astronomical constants (IAU 2009 Resolution B2) retains the IAU 1976 definition of the astronomical unit, by specifying k as an “auxiliary defining constant” with the numerical value given in the IAU 1976 System of Astronomical Constants, 5. that the value of the astronomical unit compatible with Barycentric Dynamical Time (TDB) in Table 1 of the IAU 2009 System (149 597 870 700 m 3 m), is an average (Pitjeva and Standish 2009) of recent estimates for the astronomical unit defined by k, 6. that the TDB-compatible value for GMS listed in Table 1 of the IAU 2009 System, derived by using the astronomical unit fit to the DE421 ephemerides (Folkner et al.
    [Show full text]