Cycle 16 Abstract Catalog (Based on Phase I Submissions) Generated On: Mon Apr 9 12:08:20 EDT 2007
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Using Concrete Scales: a Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, Guia Gali
Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, Guia Gali To cite this version: Fanny Chevalier, Romain Vuillemot, Guia Gali. Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2013, 19 (12), pp.2426-2435. 10.1109/TVCG.2013.210. hal-00851733v1 HAL Id: hal-00851733 https://hal.inria.fr/hal-00851733v1 Submitted on 8 Jan 2014 (v1), last revised 8 Jan 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, and Guia Gali a b c Fig. 1. Illustrates popular representations of complex measures: (a) US Debt (Oto Godfrey, Demonocracy.info, 2011) explains the gravity of a 115 trillion dollar debt by progressively stacking 100 dollar bills next to familiar objects like an average-sized human, sports fields, or iconic New York city buildings [15] (b) Sugar stacks (adapted from SugarStacks.com) compares caloric counts contained in various foods and drinks using sugar cubes [32] and (c) How much water is on Earth? (Jack Cook, Woods Hole Oceanographic Institution and Howard Perlman, USGS, 2010) shows the volume of oceans and rivers as spheres whose sizes can be compared to that of Earth [38]. -
On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: the Urc Ious Case of WR124 Jesus A
East Tennessee State University Digital Commons @ East Tennessee State University ETSU Faculty Works Faculty Works 12-10-2018 On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The urC ious Case of WR124 Jesus A. Toala UNAM Campus Morelia Lidi Oskinova University of Potsdam W.R. Hamann University of Potsdam Richard Ignace East Tennessee State University, [email protected] A.A. C. Sander University of Potsdam See next page for additional authors Follow this and additional works at: https://dc.etsu.edu/etsu-works Citation Information Toala, Jesus A.; Oskinova, Lidi; Hamann, W.R.; Ignace, Richard; Sander, A.A. C.; Todt, H.; Chu, Y.H.; Guerrero, M. A.; Hainich, R.; Hainich, R.; and Terrejon, J. M.. 2018. On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The urC ious Case of WR124. Astrophysical Journal Letters. Vol.869 https://doi.org/10.3847/2041-8213/aaf39d ISSN: 2041-8205 This Article is brought to you for free and open access by the Faculty Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in ETSU Faculty Works by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The Curious Case of WR124 Copyright Statement © 2018. The American Astronomical Society. Reproduced by permission of the AAS. Creator(s) Jesus A. Toala, Lidi Oskinova, W.R. Hamann, Richard Ignace, A.A. C. Sander, H. Todt, Y.H. Chu, M. A. Guerrero, R. Hainich, R. Hainich, and J. M. -
Determination of the Night Sky Background Around the Crab Pulsar Using Its Optical Pulsation
28th International Cosmic Ray Conference 2449 Determination of the Night Sky Background around the Crab Pulsar Using its Optical Pulsation E. O˜na-Wilhelmi1,2, J. Cortina3, O.C. de Jager1, V. Fonseca2 for the MAGIC collaboration (1) Unit for Space Physics, Potchefstroom University for CHE, Potchefstroom 2520, South Africa (2) Dept. de f´isica At´omica, Nuclear y Molecular, UCM, Ciudad Universitaria s/n, Madrid, Spain (3) Institut de Fisica de l’Altes Energies, UAB, Barcelona, Spain Abstract The poor angular resolution of imaging γ-ray telescopes is offset by the large collection area of the next generation telescopes such as MAGIC (17 m diameter) which makes the study of optical emission associated with some γ-ray sources feasible. In particular the optical photon flux causes an increase in the photomultiplier DC currents. Furthermore, the extremely fast response of PMs make them ideal detectors for fast (subsecond) optical transients and periodic sources like pulsars. The HEGRA CT1 telescope (1.8 m radius) is the smallest Cerenkovˆ telescope which has seen the Crab optical pulsations. 1. Method Imaging Atmospheric Cerenkovˆ Detectors (IACT) can be used to detect the optical emission of an astronomical object through the increase it generates in the currents of the camera pixels [7,3]. Since the Crab pulsar shows pulsed emission in the optical wavelengths with the same frequency as in radio and most probably of VHE γ-rays, we use the central pixel of CT1 [5] and MAGIC [1] to monitor the optical Crab pulsation. Before the Crab observations were performed, the expected rate of the Crab pulsar and background were estimated theoretically. -
Detection of PAH and Far-Infrared Emission from the Cosmic Eye
Accepted for publication in ApJ A Preprint typeset using LTEX style emulateapj v. 08/22/09 DETECTION OF PAH AND FAR-INFRARED EMISSION FROM THE COSMIC EYE: PROBING THE DUST AND STAR FORMATION OF LYMAN BREAK GALAXIES B. Siana1, Ian Smail2, A. M. Swinbank2, J. Richard2, H. I. Teplitz3, K. E. K. Coppin2, R. S. Ellis1, D. P. Stark4, J.-P. Kneib5, A. C. Edge2 Accepted for publication in ApJ ABSTRACT ∗ We report the results of a Spitzer infrared study of the Cosmic Eye, a strongly lensed, LUV Lyman Break Galaxy (LBG) at z =3.074. We obtained Spitzer IRS spectroscopy as well as MIPS 24 and 70 µm photometry. The Eye is detected with high significance at both 24 and 70 µm and, when including +4.7 11 a flux limit at 3.5 mm, we estimate an infrared luminosity of LIR = 8.3−4.4 × 10 L⊙ assuming a magnification of 28±3. This LIR is eight times lower than that predicted from the rest-frame UV properties assuming a Calzetti reddening law. This has also been observed in other young LBGs, and indicates that the dust reddening law may be steeper in these galaxies. The mid-IR spectrum shows strong PAH emission at 6.2 and 7.7 µm, with equivalent widths near the maximum values observed in star-forming galaxies at any redshift. The LP AH -to-LIR ratio lies close to the relation measured in local starbursts. Therefore, LP AH or LMIR may be used to estimate LIR and thus, star formation rate, of LBGs, whose fluxes at longer wavelengths are typically below current confusion limits. -
Close-Up View of a Luminous Star-Forming Galaxy at Z = 2.95 S
Close-up view of a luminous star-forming galaxy at z = 2.95 S. Berta, A. J. Young, P. Cox, R. Neri, B. M. Jones, A. J. Baker, A. Omont, L. Dunne, A. Carnero Rosell, L. Marchetti, et al. To cite this version: S. Berta, A. J. Young, P. Cox, R. Neri, B. M. Jones, et al.. Close-up view of a luminous star- forming galaxy at z = 2.95. Astronomy and Astrophysics - A&A, EDP Sciences, 2021, 646, pp.A122. 10.1051/0004-6361/202039743. hal-03147428 HAL Id: hal-03147428 https://hal.archives-ouvertes.fr/hal-03147428 Submitted on 19 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 646, A122 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039743 & c S. Berta et al. 2021 Astrophysics Close-up view of a luminous star-forming galaxy at z = 2.95? S. Berta1, A. J. Young2, P. Cox3, R. Neri1, B. M. Jones4, A. J. Baker2, A. Omont3, L. Dunne5, A. Carnero Rosell6,7, L. Marchetti8,9,10 , M. Negrello5, C. Yang11, D. A. Riechers12,13, H. Dannerbauer6,7, I. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
The Saga of M81: Global View of a Massive Stellar Halo in Formation
Draft version October 27, 2020 Typeset using LATEX twocolumn style in AASTeX63 The Saga of M81: Global View of a Massive Stellar Halo in Formation Adam Smercina ,1, 2 Eric F. Bell ,1 Paul A. Price,3 Colin T. Slater ,2 Richard D'Souza,1, 4 Jeremy Bailin ,5 Roelof S. de Jong ,6 In Sung Jang ,6 Antonela Monachesi ,7, 8 and David Nidever 9, 10 1Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA 2Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580, USA 3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 4Vatican Observatory, Specola Vaticana, V-00120, Vatican City State 5Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324, USA 6Leibniz-Institut f¨urAstrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 7Instituto de Investigaci´onMultidisciplinar en Ciencia y Tecnolog´ıa,Universidad de La Serena, Ra´ulBitr´an1305, La Serena, Chile 8Departamento de F´ısica y Astronom´ıa,Universidad de La Serena, Av. Juan Cisternas 1200 N, La Serena, Chile 9Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 10National Optical Astronomy Observatory, 950 North Cherry Ave, Tucson, AZ 85719 (Received 31 October, 2019; Revised 31 August, 2020; Accepted 23 October, 2020) Submitted to The Astrophysical Journal ABSTRACT Recent work has shown that Milky Way-mass galaxies display an incredible range of stellar halo properties, yet the origin of this diversity is unclear. The nearby galaxy M81 | currently interacting with M82 and NGC 3077 | sheds unique light on this problem. -
Evidence for Binary Interaction?!
An Apparent Helical Outflow from a Massive Evolved Star: Evidence for Binary Interaction?! Ryan M. Lau (Caltech/JPL) SOFIA Community Tele-talk Mar 9th, 2016 Collaborators: Matt Hankins, Terry Herter, Mark Morris, Betsy Mills, Mike Ressler An Outline • Background:"Massive"stars"and"the"influence" of"binarity" " • This"Work:"A"dusty,"conical"helix"extending" from"a"Wolf7Rayet"Star" " • The"Future:"Exploring"Massive"Stars"with"the" James"Webb"Space"Telescope" 2" Massive Stars: Galactic Energizers and Refineries • Dominant"sources"of"opFcal"and"UV"photons" heaFng"dust" " • Exhibit"strong"winds,"high"massJloss,"and"dust" producFon"aKer"leaving"the"main"sequence" "" • Explode"as"supernovae"driving"powerful" shocks"and"enriching"the"interstellar"medium" 3" Massive Stars: Galactic Energizers and Refineries Arches"and"Quintuplet"Cluster" at"the"GalacFc"Center" Gal."N" 10"pc" Spitzer/IRAC"(3.6","5.8,"and"8.0"um)" 4" Massive Stars: Galactic Energizers and Refineries Arches"and"Quintuplet"Cluster" at"the"GalacFc"Center" Pistol"Star"and"Nebula" 1"pc" Pa"and"ConFnuum"" 10"pc" Spitzer/IRAC"(3.6","5.8,"and"8.0"um)" 5" Massive stars are not born alone… Binary"InteracCon"Pie"Chart" >70%"of"all"massive" stars"will"exchange" mass"with"companion"" Sana+"(2012)" 6" Influence of Binarity on Stellar Evolution of Massive Stars Binary"InteracCon"Pie"Chart" >70%"of"all"massive" stars"will"exchange" mass"with"companion"" Mass"exchange"will" effect"stellar"luminosity" and"massJloss"rates…" Sana+"(2012)" 7" Influence of Binarity on Stellar Evolution of Massive Stars Binary"InteracCon"Pie"Chart" -
NEUTRAL HYDROGEN CLOUDS in the M81/M82 GROUP KM Chynoweth
University of Massachusetts Amherst ScholarWorks@UMass Amherst Astronomy Department Faculty Publication Series Astronomy 2008 NEUTRAL HYDROGEN CLOUDS IN THE M81/M82 GROUP KM Chynoweth GI Langston Min Yun University of Massachusetts - Amherst FJ Lockman KHR Rubin See next page for additional authors Follow this and additional works at: https://scholarworks.umass.edu/astro_faculty_pubs Part of the Astrophysics and Astronomy Commons Recommended Citation Chynoweth, KM; Langston, GI; Yun, Min; Lockman, FJ; Rubin, KHR; and Scoles, SA, "NEUTRAL HYDROGEN CLOUDS IN THE M81/M82 GROUP" (2008). The Astrophysical Journal. 1129. 10.1088/0004-6256/135/6/1983 This Article is brought to you for free and open access by the Astronomy at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Astronomy Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Authors KM Chynoweth, GI Langston, Min Yun, FJ Lockman, KHR Rubin, and SA Scoles This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/astro_faculty_pubs/1129 Neutral Hydrogen Clouds in the M81/M82 Group Katie M. Chynoweth1 Vanderbilt University, Physics and Astronomy Department, 1807 Station B, Nashville, TN 37235 Glen I. Langston National Radio Astronomy Observatory, Green Bank, WV 24944 Min S. Yun University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002 Felix J. Lockman, K.H.R. Rubin2 and Sarah A. Scoles3 National Radio Astronomy Observatory, Green Bank, WV 24944 ABSTRACT We have observed a 3◦ ×3◦ area centered on the M81/M82 group of galaxies using the Robert C. Byrd Green Bank Telescope (GBT) in a search for analogs to the High Velocity Clouds (HVCs) of neutral hydrogen found around our galaxy. -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
Astronomy Magazine Special Issue
γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.