Christine Siddoway.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Christine Siddoway.Indd Maximum scope DR CHRISTINE SIDDOWAY A distinctive group of researchers on the EarthScope Bighorn Project are using innovative approaches in seismology and structural geology to study the formation of the Laramide Rocky Mountains. Dr Christine Siddoway, one of four female investigators in the team, explains their work Could you begin by introducing the Mountains? Have your studies provided any hypotheses that have been proposed to explain Earthscope Bighorn project and highlighting further insight into this phenomenon? the Bighorn Mountains intracratonic arch. the reasons for its establishment? The Laramide Orogeny occurred during plate How important has collaboration been to the The EarthScope Bighorn Project is an convergence between the Farallon and North project? integrated geological and geophysical American tectonic plates during the time investigation of the Bighorn Mountains in period 75-45 million years ago. Distinctive There is extraordinary harmony and cooperation Wyoming. The aim of the multi-institution aspects of the orogeny are: the involvement among the collaborative group, with strong interdisciplinary investigation, led by University of crystalline basement in the near-surface communication and collaboration between of Wyoming investigator Eric Erslev, is to faulting (‘thick-skinned’ deformation); the graduate and postdoctoral researchers identify the process of formation for some the migration of diffuse magmatism and at the various institutions. This makes for the of the ‘signature’ mountain ranges of the distributed deformation into the continental strongest possible interpretations of the 3D/4D North American West: the Laramide Rocky foreland, distant from the plate boundary architecture of the Bighorn arch that are derived Mountains. Unlike many active mountain zone; and the formation of large asymmetric from multiple independent methods belts (orogens) of the world such as the Andes, sedimentary basins between basement- Himalayas, New Zealand Alps or St Elias ranges involved uplifts. In the Rocky Mountains, Is it signifi cant that the project is led by – that developed upon plate tectonic boundaries, deformation produced an anastomosing and involves a high proportion of – women the vast mountains of the Laramide Rockies array of basement-cored arches separated participants? formed well within the continental portion of by lens-shaped foreland basins. Estimates of the North American tectonic plate, far from a the amount of shortening necessary to form I believe this is a really distinctive and unusual zone of plate convergence. the Bighorn arch ranges from 8-13 per cent. aspect of the Bighorn Project. Considering the Rather than fold-thrust style deformation, demographics of the Earth sciences community What is the signifi cance of using geology and the Laramide features large-scale anticlinal in the US, the rich collaboration among women geophysics to study the Rocky Mountains in structures that are either asymmetrical and researchers who have a leadership role as particular? bounded by thrust faults, or symmetrical, with Principle Investigators (PIs), and the number of smaller reverse faults on both limbs. women students who are contributing to the The Bighorn Mountains have a structural research is notable. Four of the six PIs and both architecture that is so well known to geologists Are there unanswered questions that the postdoctoral researchers on the project are worldwide that it serves as an archetype for Bighorn project seeks to address? women. In addition, the project has supported within-plate, intracratonic deformation. One two MSc and four undergraduate women thing that geologists perceive but that it is Paradoxically – in light of the scale of the researchers. For us participants, the experience perhaps diffi cult for the casual traveller to Bighorn range and the large number of geology has been exemplary as an affi rmation that appreciate is the phenomenal scale of the visitors – there is not a consensus about which capable and innovative female researchers are structure: there is a difference in elevation of of the multiple hypotheses proposed for the attaining leadership stature in Earth sciences, 10,000 m from the ‘basement’-cover contact formation of the prodigious arch best explains a fi eld that has historically been dominated by beneath the adjoining Bighorn Basin to its its form. The mechanism for shortening of strong men at the top levels. We feel a great optimism restored position over the top of the mountain Archean lithosphere has long been unresolved about the future prospects for infl uential range. due to lack of geophysical imaging. The Bighorn future contributions by female researchers who Project seeks to obtain a 3D seismic image of the received academic training and advanced their Are you able to provide a brief background integral structures that form the architecture of professional standing through participating in on the Laramide orogeny of the Bighorn the range, and thereby to test the four principal the Bighorn Project. WWW.RESEARCHMEDIA.EU 113 DR CHRISTINE SIDDOWAY Big discoveries in the Bighorns A group of EarthScope researchers are making important discoveries about the formation of intracratonic mountains, in an integrated geoscience project that has wide-reaching impacts THE STRIKING APPEARANCE of the Bighorn lithosphere-scale linkage of foreland arches to academic theses that are part of the Bighorn Mountains has long fascinated geologists and plate tectonics and regional fracture patterns Project tourists alike. The crystalline rocks and the in basement-involved orogens that commonly layered sedimentary rocks that cover them control oil and gas production”. The team of SEISMIC SOLUTIONS form an elongated, doubly-plunging arch, which Bighorn Project investigators hope to determine visitors can actually see when they observe the mechanisms that drive the formation of The fi rst of these encompasses the Bighorns that the sedimentary layers on the east side of basement-involved arches, like the Bighorns, Arch Seismic Experiment (BASE), which in the range slope down to the east, and those on which will greatly advance knowledge of intra- 2010 was successful in imaging the crust and the west dip to the west. On the outer fl anks continental deformation worldwide. In doing mantle below the Bighorn Arch by carrying of the range, geological faults cut through the so, this research deepens the understanding of out an active-source wide-angle refl ection rock creating abrupt changes in the angle of continental lithospheric rheology, one of the and refraction survey led by Kate Miller and the layers, as Dr Christine Siddoway, a Principal fundamental problems in plate tectonics. Steve Harder. This allowed project researchers Investigator for the EarthScope Bighorn Project, to measure crustal velocity and thickness, and explains: “The high, interior parts of the Bighorn identify large-scale structures: “Extraordinarily AN INTEGRATED PROJECT Mountains are underlain by crystalline-textured high-resolution images were obtained through granite and gneiss that have properties of great As an integrated Geoscience initiative, the use of 21 seismic shots recorded on 1,800 ‘Texan’ strength and resistance to erosion. The granites EarthScope Bighorn Project brings together an dataloggers, with 4.5 Hz vertical component and gneisses – often referred to as ‘basement’ innovative combination of approaches to its geophones,” Siddoway explains. The visionary rocks – have these characteristics partly because study of the range. Notably, these are: experiment produced 15,000 total travel times they are of great age, but also because they for inversion, obtaining the fi rst high-resolution formed at depth in the Earth’s crust during the • The use of a hybrid active/passive high- P-wave velocity models of the crust and upper Archean Eon, more than 2.5 billion years ago”. resolution seismic studies mantle of the Bighorn region. • The use of iterative retrodeformation The project employs passive seismic data, MECHANISMS OF FORMATION techniques that balance surface areas and 3D recorded principally from broadband The process of formation of the basement arch volumes to develop GIS-based geometric/ is the focus of the EarthScope Bighorn Project, kinematic models of the upper crust over which addresses not solely the Bighorns but also time-integrated steps seeks to increase understanding of the structures responsible for within-continent deformation, • The involvement of student participants as Siddoway outlines: “Our fi ndings apply who undertake individual research, to an array of global problems, ranging from through internship training and as FIGURE 1. Simplifi ed cross section of the Bighorns Arch, showing four contrasting Moho geometries for the four lithospheric models being tested. Scenarios one and four have been ruled out. DOCTORAL STUDENT WILL YECK AND INTERN AUSTIN ANDRUS AT WORK INSTALLING A BROADBAND SEISMOMETER 114 INTERNATIONAL INNOVATION INTELLIGENCE instruments, such as the EarthScope USArray BIGHORN PROJECT and BASE’s EarthScope FlexArray. Investigator Anne Sheehan conceived the innovative use FORMATION OF BASEMENT-INVOLVED of 850 of the Texan instruments as recorders FORELAND ARCHES: AN INTEGRATED for naturally occurring distant (teleseismic) EARTHSCOPE EXPERIMENT earthquakes. Siddoway elaborates: “Traditionally, OBJECTIVES the ‘Texan’ instruments are used solely as active sensors, so it is an innovation in our experiment The EarthScope Bighorn Project is an to extend their use to
Recommended publications
  • Earthscope Project Plan
    ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ A NEW VIEW INTO EARTH ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ PROJECT PLAN ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ A NEW VIEW INTO EARTH ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ PROJECT PLAN OCTOBER 2001 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ EarthScope Working Group Thomas Henyey (Chair) ............. University of Southern California Thomas Herring.......................... Massachusetts Institute of Technology Steve Hickman ............................ United States Geological Survey Thomas Jordan .......................... University of Southern California John McRaney (Secretary) ........ University of Southern California Anne Meltzer............................... Lehigh University J. Bernard Minster...................... University of California, San Diego Dennis Nielson ........................... DOSECC Paul Rosen .................................. Jet Propulsion Laboratory Paul Silver ................................... Carnegie Institution of Washington Mark Simons............................... California Institute of Technology David Simpson ........................... IRIS Robert Smith............................... University of Utah Wayne Thatcher ......................... United States Geological Survey Mark Zoback ............................... Stanford University ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ Contents○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
    [Show full text]
  • Overview of Earthscope: Usarray and the Plate Boundary Observatory
    Overview of EarthScope: USArray and the Plate Boundary Observatory Bob Lillie EarthScope Education/Outreach Manager EarthScope National Office Oregon State University EarthScope Cascadia Interpretive Workshop Mt. Rainier National Park Education Center Tahoma Woods, Washington April 7-10, 2008 www.earthscope.org 7 11 15 5 6 14 NATIONAL PARKLANDS 4 10 1317 12 3 9 18 2 8 16 1 Introductions (About 5 at a time ) 1. Who? Where from? Why this workshop? 2. What’s your favorite park - other than your own - and why? 20 19 Parks and Plates ©2005 Robert J. Lillie Acknowledgements • Funded by the National Science Foundation • A collaborative effort by the Incorporated Institutions for Seismology (IRIS), UNAVCO Inc., and Stanford University, with contributions from the U. S. Geological Survey, NASA, and other organizations What is EarthScope? A nationwide program to ….. • Explore the structure and evolution of the North American continent • Understand processes that cause earthquakes and volcanic eruptions Drillhole across San Andreas Fault 875 GPS Instruments 175 Borehole Strainmeters 5 Long-Baseline Laser Strainmeters 400 Seismometers at 2,000 sites 100 Permanent Seismometers USArray (Includes 400 Transportable Seismometers) USArray (Includes 400 Transportable Seismometers) IRIS Washington, DC Station occupies a site for 1½ - 2 years 10 years to leap-frog array across the country Plate Boundary Observatory (PBO) • GPS Instruments • Strainmeters UNAVCO Boulder, CO San Andreas Fault SAFOD Observatory at Depth (SAFOD) Stanford University SAN ANDREAS FAULT ZONE ANDREAS FAULT SAN EarthScope National Office (ESNO) To assist the EarthScope community in products and training for science and outreach. For the next few years, EarthScope is focused on the west.
    [Show full text]
  • 2006-2007 Science Planning Summaries
    Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the available indexes. Project Web Sites Find more information about 2006-2007 USAP projects by viewing project web sites. More Information Additional information pertaining to the 2006-2007 Field Season. Home Page Station Schedules Air Operations Staffed Field Camps Event Numbering System 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the USAP Program Indexes available indexes. Aeronomy and Astrophysics Dr. Bernard Lettau, Program Director (acting) Project Web Sites Biology and Medicine Dr. Roberta Marinelli, Program Director Find more information about 2006-2007 USAP projects by Geology and Geophysics viewing project web sites. Dr. Thomas Wagner, Program Director Glaciology Dr. Julie Palais, Program Director More Information Ocean and Climate Systems Additional information pertaining Dr. Bernhard Lettau, Program Director to the 2006-2007 Field Season. Artists and Writers Home Page Ms. Kim Silverman, Program Director Station Schedules USAP Station and Vessel Indexes Air Operations Staffed Field Camps Amundsen-Scott South Pole Station Event Numbering System McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects Principal Investigator Index Deploying Team Members Index Institution Index Event Number Index Technical Event Index Project Web Sites 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the Project Web Sites available indexes. Principal Investigator/Link Event No. Project Title Aghion, Anne W-218-M Works and days: An antarctic Project Web Sites chronicle Find more information about 2006-2007 USAP projects by Ainley, David B-031-M Adélie penguin response to viewing project web sites.
    [Show full text]
  • What Is Earthscope's Plan for Yukon?
    What is EarthScope? The United States National Science Foundation (NSF) has provided funding for a large collaborative research project known as EarthScope. The purpose is to study the North American continent by deploying seismic (earthquake) sensors through the USArray program and GPS instruments through the Plate Boundary Observatory (PBO). Since 2003, USArray has installed temporary networks of seismometers known as the Transportable Array (TA) across the contiguous United States (the lower 48 states), and in southern Ontario and Quebec. The TA consists of 400 high-quality, The map above shows the locations of the Transportable Array portable seismic stations that are placed at temporary sites. seismometers that were installed between 2004 and 2013. Most Unless adopted and made into a permanent installation, each were removed and re-located as the array progressed from west to USArray instrument is picked up and moved after 18 to 24 east. months to the next carefully spaced array location. When completed, more than 2,000 locations will have been occupied during the USArray program. The earthquake data gathered from these sites result in more accurate maps of earthquake locations and are analyzed to produce high-resolution images of Earth’s interior. All data are freely accessible from EarthScope. What is EarthScope’s plan for Yukon? In 2013 and 2014, USArray installed a total of 25 stations in Alaska. Beginning in 2015, USArray is proposing to place temporary seismic stations at approximately 32 locations across the Yukon, ve in western Northwest Territories, and six in northern British Columbia. It will take three years (2015-2017) to achieve full deployment.
    [Show full text]
  • Trimble Selected for UNAVCO's Earthscope PBO Network Trimble GPS to Monitor the Active Tectonic Boundary of Western North America
    Trimble Selected for UNAVCO's EarthScope PBO Network Trimble GPS to Monitor the Active Tectonic Boundary of Western North America SUNNYVALE, Calif., Feb. 26, 2004 -- Trimble (NASDAQ: TRMB) announced today that UNAVCO, Inc., has selected the Company to provide 875 Trimble NetRSTM Global Positioning System (GPS) reference station receivers over five years. The reference station receivers will be used as part of the Plate Boundary Observatory (PBO) network, a major component of the EarthScope Program sponsored by the National Science Foundation (NSF). About the EarthScope Program The EarthScope facility is a multi-purpose array of geodetic and seismic instruments and a borehole observatory that will greatly expand the observational capabilities of the Earth sciences to lead to advancements in understanding the structure, evolution and dynamics of the North American continent. This is made possible by theoretical, computational, and technological advances in geophysics, satellite geodesy, information technology, drilling technology and downhole instrumentation. The EarthScope observational facility provides a framework for broad, integrated studies across the Earth sciences, including research on fault properties and the earthquake process, crustal strain transfer, magmatic and hydrous fluids in the crust and mantle, plate boundary processes, large-scale continental deformation, continental structure and evolution, and composition and structure of the deep-Earth. In addition, EarthScope offers a centralized forum for Earth science education at all levels and an excellent opportunity to develop cyber infrastructure to integrate, distribute and analyze diverse data sets. About PBO The Plate Boundary Observatory (PBO) is a geodetic observatory designed to study the three-dimensional strain field resulting from the Earth's tectonic movements across the active boundary zone between the Pacific and North American plates in the western United States.
    [Show full text]
  • Seismic Tomography Uses Earthquake Waves to Probe the Inner Earth CORE CONCEPTS Sid Perkins, Science Writer
    CORE CONCEPTS Seismic tomography uses earthquake waves to probe the inner Earth CORE CONCEPTS Sid Perkins, Science Writer Computerized tomography (CT) scans revolutionized medicine by giving doctors and diagnosticians the ability to visualize tissues deep within the body in three dimensions. In recent years, a different sort of imaging technique has done the same for geophysi- cists. Seismic tomography allows them to detect and depict subterranean features. The advent of the approach has proven to be a boon for researchers looking to better understand what’s going on beneath our feet. Results have of- fered myriad insights into environmental conditions within the Earth, sometimes hundreds or even thou- sands of kilometers below the surface. And in some cases, the technique offers evidence that bolsters models of geophysical processes long suspected but previously only theorized, researchers say. Seismic tomography “lets us image Earth’s structures at all sorts of scales,” says Jeffrey Freymueller, a geo- Data gathered by a network of seismic instruments (red) have enabled researchers physicist at Michigan State University in East Lansing to discern a region of relatively cold, stiff rock (shades of green and blue) beneath eastern North America. This is likely to be the remnants of an ancient tectonic and director of the national office of the National Sci- plate. Image credit: Suzan van der Lee (Northwestern University, Evanston, IL). ence Foundation’s EarthScope. That 15-year program, among other things, operates an array of seismometers— some permanent, some temporary—that has col- through rocks that are colder, denser, and drier. By lected data across North America.
    [Show full text]
  • GAGE Quarterly Report
    2013 – 2018 UNAVCO Project Report Geodesy Advancing Geosciences and EarthScope: GAGE Quarterly Report Y5Q4: 01 July 2018 – 30 September 2018 EAR – 1261833 9 November 2018 Submitted by Principal Investigators: M. Meghan Miller, President Glen S. Mattioli, Geodetic Infrastructure Program Director Charles M. Meertens, Geodetic Data Services Program Director Donna J. Charlevoix, Education & Community Engagement Program Director Report coordination: David A. Phillips, Data Products Project Manager 0. Introduction This report presents the program activities and broader impacts for the fourth quarter of the fifth project year (Y5Q4) for Geodesy Advancing Geosciences and EarthScope: the GAGE Facility, under NSF Award EAR-1261833 to UNAVCO. The report includes four sections: (1) UNAVCO Community, Governance and ​ Management, (2) Geodetic Infrastructure Program, (3) Geodetic Data Services Program, (4) Education and Community Engagement Program, and two Attachments: (I) Budget and Variance Reporting, and (II) Project Concerns. Each section is accompanied by performance metrics that delineate the contributions and progress of the GAGE Facility. Throughout this report, we differentiate the work of the UNAVCO GAGE Facility and its activities from those of the UNAVCO university consortium, which is a community of scientists with associated university membership, governance, and oversight of the nonprofit corporation UNAVCO, Inc. and its management. 1. Community, Governance & Management 1.1 THE UNAVCO CONSORTIUM AND COMMUNITY UNAVCO, a non-profit, university-governed consortium, facilitates geoscience research and education ​ using geodesy. The consortium membership includes 118 U.S. Full Members, most of which are degree granting institutions that participate in UNAVCO governance and science community. Another 111 ​ Associate Members include organizations that share UNAVCO’s purpose at home and abroad, giving it global reach in advancing geodesy.
    [Show full text]
  • 2013 – 2018 UNAVCO Project Report Geodesy Advancing Geosciences and Earthscope: GAGE Quarterly Report
    2013 – 2018 UNAVCO Project Report Geodesy Advancing Geosciences and EarthScope: GAGE Quarterly Report Y4Q4: 01 July 2017 – 30 September 2017 EAR – 1261833 9 November 2017 Submitted by Principal Investigators: M. Meghan Miller, President Glen S. Mattioli, Geodetic Infrastructure Program Director Charles M. Meertens, Geodetic Data Services Program Director Donna J. Charlevoix, Education & Community Engagement Program Director Report coordination: David A. Phillips, Data Products Project Manager 0. Introduction This report presents the program activities and broader impacts for the fourth quarter of the fourth project year (Y4Q4) for Geodesy Advancing Geosciences and EarthScope: the GAGE Facility, under NSF Award EAR­-1261833 to UNAVCO. The report includes four sections: (1) UNAVCO Community, Governance and Management, (2) Geodetic Infrastructure Program, (3) Geodetic Data Services Program, (4) Education and Community Engagement Program, and two Attachments: (I) Budget and Variance Reporting, and (II) Project Concerns. Each section is accompanied by performance metrics that delineate the contributions and progress of the GAGE Facility. Throughout this report, we differentiate the work of the UNAVCO GAGE Facility and its activities from those of the UNAVCO university consortium, which is a community of scientists with associated university membership, governance, and oversight of the nonprofit corporation UNAVCO, Inc. and its management. 1. Community, Governance & Management 1.1 THE UNAVCO CONSORTIUM AND COMMUNITY UNAVCO, Inc., a non­-profit, university-governed consortium, facilitates geoscience research and education using geodesy. The consortium membership includes 114 U.S. Academic Members, most of which are degree ­granting institutions that participate in UNAVCO governance and science community. Another 108 Associate Members include organizations that share UNAVCO’s purpose at home and abroad, giving it global reach in advancing geodesy.
    [Show full text]
  • Geodesy Advancing Geosciences and Earthscope (Gage) $12,190,000 -$91,000 / -6.9%
    FY 2019 NSF Budget Request to Congress GEODESY ADVANCING GEOSCIENCES AND EARTHSCOPE (GAGE) $12,190,000 -$91,000 / -6.9% Geodesy Advancing Geosciences and Earthscope Funding (Dollars in Millions) Change over FY 2017 FY 2018 FY 2019 FY 2017 Actual Actual (TBD) Request Amount Percent $13.10 - $12.19 -$0.91 -6.9% Geodesy Advancing Geosciences and EarthScope comprises a distributed, multi-user, national facility for the development, deployment, and operational support of modern geodetic instrumentation to serve national goals in basic research and education in the Earth sciences with a focus on studies of Earth's surface deformation at many scales with unprecedented temporal and spatial resolution. GAGE facilities support fundamental research and discovery on continental deformation, plate boundary processes, the earthquake cycle, the geometry and dynamics of magmatic systems, continental groundwater storage, and hydrologic loading. GAGE is managed and operated for NSF by UNAVCO, a consortium of 115 U.S. universities and non-profit institutions with research and teaching programs in geophysics and geodesy and 108 associate members from foreign institutions. GAGE was formed in late FY 2013 from the geodetic component of the EarthScope facility and related geodetic facilities previous managed by UNAVCO. The FY 2019 Budget Request will enable GAGE to provide key services for the geoscience research community, including global and regional observing networks, field and technical support for experiments worldwide, data management and distribution systems, and other related activities. Over the last three decades, the Earth science research community has greatly refined our ability to determine the position and motion of points on Earth’s surface using space geodetic techniques, enabling high-resolution studies of Earth processes in a wide range of fields.
    [Show full text]
  • Combining Earthscope Data with Petrology and Geochemistry To
    Using the Mid-Continent Rift to make plate tectonics "real" for Midwestern students Carol Engelmann1, Greg Waite1, Seth Stein2, Suzan van der Lee2, Tyrone Rooney3 1Michigan Technological University, 2Northwestern University, 3Michigan State University, A major challenge for geoscience educators in the Midwest is that plate tectonics, one of the grand unifying themes of the earth sciences, seems very remote. It describes interesting processes like volcanic eruptions, mountain building, and rifting that happen in far-away places that most students have not seen. It is hard for educators to connect these concepts to students’ experiences. The North American Mid- Continent Rift System (MCRS), the dominant geologic feature of the mid-continent, offers an opportunity for students in the Midwest to observe the effects of plate tectonics close to home. Unfortunately, the MCRS is surprisingly unrecognized outside of the geological community. Hence we seek to generate material for both formal and informal educators, as well as the general public that explore this extraordinary feature, its tectonic significance, and the ongoing studies of it. In addition, we will design and facilitate a series of workshops for both formal and informal educators that focus on the educational opportunities provided by the MCRS. This workshop series will be delivered in collaboration with Education and Outreach Committees from EarthScope, UNAVCO, and IRIS. A one-week workshop for formal and informal educators will take place at Michigan Technological University in Houghton, Michigan in 2014. This setting provides opportunities to highlight well-exposed features of the rift. Four one-day follow-up workshops will be held at schools, museums, or science centers in Illinois, Michigan, Minnesota, and Wisconsin; specific locations are to be determined.
    [Show full text]
  • 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants 19 J
    Antarctica: A Keystone in a Changing World Proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 to September 1, 2007, Alan K. Cooper, Peter Barrett, Howard Stagg, Bryan Storey, Edmund Stump, Woody Wise, and the 10th ISAES editorial team, Polar Research Board, National Research Council, U.S. Geological Survey ISBN: 0-309-11855-7, 164 pages, 8 1/2 x 11, (2008) This free PDF was downloaded from: http://www.nap.edu/catalog/12168.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press.
    [Show full text]
  • An Interactive Map Tool for Earthscope Education and Outreach
    Education & Outreach An Interactive Map Tool for EarthScope Education and Outreach Michael Hamburger » Dept of Geological Sciences, Stuart Wier » UNAVCO, Boulder, CO Indiana University Marianne Weingroff » Digital Library for Earth System Anne Hereford » Dept of Geological Sciences, Indiana Education/UCAR, Boulder, CO University William Holt » Mineral Physics Institute, Stony Brook Lou Estey » UNAVCO, Boulder, CO University Susan Eriksson » UNAVCO, Boulder, CO Glenn Richard » Mineral Physics Institute, Stony Brook Chuck Meertens » UNAVCO, Boulder, CO University We have created a new, interactive, web-based map utility that can make EarthScope-related scientifi c results accessible to a large number and variety of users. Th e tool provides a user-friendly interface that allows users to access a variety of maps, satellite images, and geophysical data at a range of spatial scales. Th e EarthScope Voyager map tool allows users to interactively create a variety of geographic, geologic, and geodynamic maps of the EarthScope study area. Th e utility is built on the “Jules Verne Voyager” suite of map tools, developed by UNAVCO for the study of global-scale geodynamic processes. Users can choose from a variety of base maps (including satellite imagery, global topography, geoid, sea-fl oor age, strain rate and seismic haz- ard maps, and others), add a number of geographic and geophysical overlays (coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, etc.), and superimpose both observed and model veloc- ity vectors representing a compilation of 5170 geodetic measurements from around the world. Users can select from 26 frames of reference, allowing a Figure 1. Image created using the EarthScope visual representation of both ‘absolute’ plate motion (in a no-net rotation Voyager, Jr.
    [Show full text]