Stress Fractures of the Fifth Metatarsal

Total Page:16

File Type:pdf, Size:1020Kb

Stress Fractures of the Fifth Metatarsal http://dx.doi.org/10.14517/aosm15025 Review Article pISSN 2289-005X·eISSN 2289-0068 Stress fractures of the fifth metatarsal Jae-Young Lee, Jin-Wha Chung Department of Orthopedic Surgery, The Catholic University of Korea, Bucheon St. Mary’s Hospital, Bucheon, Korea A stress fracture can be defined as a spontaneous fracture due to accumulation of stress on a healthy bone. Stress frac- tures of the 5th metatarsal usually locate to the proximal 1.5 cm of the metatarsal shaft, a characteristic based on ana- tomical and biomechanical parameters. Many surgeons agree that the postoperative outcome of 5th metatarsal stress fractures tend to be associated with prolonged healing time, with nonunion, and sometimes with refracture. Acute stress fractures have been treated with immobilization using a non-weight-bearing cast, but the incidence of complications (delayed union or nonunion) after non-surgical treatment makes surgical treatment a more favorable treatment option for competitive athletes, even for young adults. Curettage and bone grafting or intramedullary screw fixation, the stan- dard surgical treatment for the 5th metatarsal stress fractures, has been associated with rapid recovery and early return to physical activities. Malalignment or instability of the foot or ankle must be addressed at the time of surgical treatment. Keywords: Fifth metatarsal; Stress fracture; Metatarsal fracture; Jones fracture INTRODUCTION 5th metatarsal fractures make it a condition of clinical significance and one that requires an accurate diagnosis In stress fractures, a sustained submaximal external force, and an appropriate treatment [3]. In 1902, Jones sug- which is just inadequate to induce an acute fracture, over- gested that a base fracture of the 5th metatarsal may also lays the bone and causes a characteristic hairline fracture occur as a result of an indirect trauma [4]. A classification that can be seen on radiographs [1]. Stress fractures are system to divide these fractures into groups was devised often found on tibial, metatarsal, and tarsal bones on by Torg et al. [5] in 1984, and many studies have investi- which a lot of weight-bearing occurs and in professionals gated the treatment, classification, and prognosis of base such as athletes, dancers, and military soldiers whose job fractures of the 5th metatarsal. requires overuse of the lower limbs as well as in the nor- mal population [2]. However, stress fractures are distinct ANATOMY AND BIOMECHANICS OF THE 5TH from pathologic fractures that are induced by even trivial METATARSAL BONE force on bones that are pathologically weakened as a re- sult of systemic metabolic or inflammatory diseases or of A metatarsal bone consists of a head, a tibia, a shaft, a severe osteoporosis. base, and a tuberosity. The tuberosity protrudes into the The base of the 5th metatarsal of the foot is the region posterolateral base of the plantar foot and provides the in which the stress concentrates biomechanically; thus, dorsolateral insertion site for the peroneous brevis ten- for anatomical characteristics the prevalence of stress don. The insertion of the lateral fibrous tissue of the fractures is higher in the 5th metatarsal compared to plantar fascia in the direction of the plantar contributes those of other sites. For reasons related to blood flow, the to the stability of the base of the 5th metatarsal bone time taken to bone union is slow, and complications such (Fig. 1). In the 2nd and 3rd metatarsal bones, the base as refractures are common. These factors associated with and the cuneiforms form a lattice-shaped joint that build Received December 1, 2015; Revised December 23, 2015; Accepted December 23, 2015 Correspondence to: Jin-Wha Chung, Department of Orthopedic Surgery, The Catholic University of Korea, Bucheon St. Mary’s Arthroscopy and Hospital, 372 Sosa-ro, Wonmi-gu, Bucheon 14647, Korea. Tel: +82-32-340-7034, Fax: +82-32-340-2671, E-mail: [email protected] Orthopedic Sports Medicine Copyright © 2016 Korean Arthroscopy Society and Korean Orthopedic Society for Sports Medicine. All rights reserved. CC This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ AOSM by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Arthrosc Orthop Sports Med 2016;3(1):1-5 1 Jae-Young Lee, Jin-Wha Chung. Stress fractures of the fifth metatarsal Peroneus Peroneus Nutrient brevis tertius artery Metaphyseal arteries Lateral band of plantar fascia "Avascular zone" Fig. 1. An adduction force on the fifth metatarsal bone is counterbal- anced by a stress force that induces a stress fracture. Between the coun- teracting forces of the 5th metatarsal bone, the rigid fascial and tendi- nous anchors act as a fulcrum. Fig. 2. Blood supply to the fifth metatarsal is provided by a single nutri- ent artery to the shaft and by the epiphyseal and the metaphyseal arter- ies to the base and to the tuberosity. a stable anatomical structure. In the 4th and 5th metatar- sal bones, the base does not contribute to the stability of the joints in this way. For this anatomical basis, during the tarsal is one of the factors that prevent successful fracture rehabilitation after treatment of the latter two metatarsal healing. Shereff et al. [8] found that whilst vascular supply fractures, adduction and abduction exercises in the axial to the shaft of the 5th metatarsal is provided through one plane are restricted and around 10o of flexion motion is nutrient artery, that to the base of the 5th metarsal is pro- permitted in the sagittal plane [6]. Of the metatarsals, the vided through more than one metadiaphyseal arteries. distal portion of the 5th metatarsal has the most mobility, Because stress fractures of the proximal 5th metatarsal thus movement is permitted relatively freely. Conversely, occur near the medial cortical hole through which the the base of the 5th metatarsal, as the section that receives nutrient vasculature feeds through, upon fracture this the most support from the ligaments and tendons, acts as site is separated from the source of blood vessels leading a lever during metatarsal movement, and therefore is the to formation of an avascular fracture site; this has been region where stress accumulates excessively. The accu- reported to be one of the important anatomical reasons mulation of stress leads to stress fractures at the proximal for the high rate of nonunion or delayed union in 5th 5th metatarsal, especially because of stress that accumu- metatarsal fractures (Fig. 2) [8]. lates with repeated adduction of the foot. By evaluating the fracture site radiographically, we can deduce by way DIAGNOSIS AND CLASSIFICATION OF of the fracture line that the fracture began at the lateral STRESS FRACTURES OF THE FIFTH plantar foot and extended toward the medial dorsal foot. METATARSALS Biomechanical causes of stress on and, therefore, of stress fractures of the base of the 5th metatarsal during Early stress fractures are distinctively associated with a weight-bearing gait include a larger than normal curva- precursory symptom of intermittent pain, rather than ture of the distal shaft of the 5th metatarsal, inversion of acute pain. This mild, intermittent pain is mistakenly the tibia, and cavus foot-induced excessive abduction taken for soft tissue injuries that gradually increase in in- force on the base of the 5th metatarsal [7]. The risk of tensity. Often, this precursory pain suddenly exacerbates stress fractures can also increase if patients already have with a piercing sensation during exercise or during gait. an inversion deformity of the hindfoot. This is because Patients with 5th metatarsal fractures have a history of a an inverted hindfoot leads to a sustained locking of change in habit such as taking up a new sports or an in- the metatarsals during the stance phase of a gait in the crease in the intensity or in the amount of sports activity background of an already low subtalar joint mobility; the and rarely have a history of trauma. metatarsal locking compromises the flexibility of the foot The fractures at the proximal 5th metatarsal can be di- and increases chances of fractures because the foot can- vided into 3 types according to anatomical position. Zone not effectively absorb the shock against ground force. 1 fractures are avulsion fractures that occur at the most The vasculature distinctive to the base of the 5th meta- proximal metatarsal bone, the tuberosity. They occur as 2 www.e-aosm.org Jae-Young Lee, Jin-Wha Chung. Stress fractures of the fifth metatarsal a result the insertion of the peroneous brevis tendon and prominent. Thus, when stress fractures are suspected plantar facia. Zone 2 fractures occur in the metaphysio- and an early plain radiography is not suggestive of them, diaphyseal junction, and zone 3 fractures occur within imaging should be repeated across a few weeks until they 1.5 cm of the proximal shaft of the 5th metatarsal (Fig. 3). can be seen. Conversely, nuclear medicine test or mag- Fractures of the latter two zones, for reasons related to netic resonance imaging may assist early diagnosis of the anatomical and biomechanical factors, are associated stress fractures. with a high incidence of delayed union, of nonunion, or Torg et al. [5] established a classification system that of refractures. Zone 2 fracture are also known as Jones’ divided the base fractures of the 5th metatarsal into 3 fracture and are usually limited to acute fractures. Be- stages: a type 1, acute injury; a type 2, delayed union; and cause patients’ symptoms and their history of trauma a type 3, nonunion (Fig. 4). Type 1 fractures are acute frac- tend to be ambiguous, it is difficult to differentiate Jones’ tures without expansion of the fracture line or without fractures from stress fractures that arise at the same site intramedullary sclerosis but with trivial hypertrophy of [9].
Recommended publications
  • Skeletal Foot Structure
    Foot Skeletal Structure The disarticulated bones of the left foot, from above (The talus and calcaneus remain articulated) 1 Calcaneus 2 Talus 3 Navicular 4 Medial cuneiform 5 Intermediate cuneiform 6 Lateral cuneiform 7 Cuboid 8 First metatarsal 9 Second metatarsal 10 Third metatarsal 11 Fourth metatarsal 12 Fifth metatarsal 13 Proximal phalanx of great toe 14 Distal phalanx of great toe 15 Proximal phalanx of second toe 16 Middle phalanx of second toe 17 Distal phalanx of second toe Bones of the tarsus, the back part of the foot Talus Calcaneus Navicular bone Cuboid bone Medial, intermediate and lateral cuneiform bones Bones of the metatarsus, the forepart of the foot First to fifth metatarsal bones (numbered from the medial side) Bones of the toes or digits Phalanges -- a proximal and a distal phalanx for the great toe; proximal, middle and distal phalanges for the second to fifth toes Sesamoid bones Two always present in the tendons of flexor hallucis brevis Origin and meaning of some terms associated with the foot Tibia: Latin for a flute or pipe; the shin bone has a fanciful resemblance to this wind instrument. Fibula: Latin for a pin or skewer; the long thin bone of the leg. Adjective fibular or peroneal, which is from the Greek for pin. Tarsus: Greek for a wicker frame; the basic framework for the back of the foot. Metatarsus: Greek for beyond the tarsus; the forepart of the foot. Talus (astragalus): Latin (Greek) for one of a set of dice; viewed from above the main part of the talus has a rather square appearance.
    [Show full text]
  • Skier Tibia (Leg) Fractures
    Skier Tibia (Leg) Fractures In years past, the prototypical ski fracture was sustained at the lower part of the outside of the leg in the region of the ankle. However, in the past 10 years, with the advent of the modern ski boots and improvements in binding, the most commonly seen lower leg skier fracture is the tibia (or shinbone) fracture. 10% of these fractures are associated with a collision. Thus, 90 % are associated with an isolated fall or noncontact type of injury, which is generally the result of binding malfunctions and inappropriate release. The most common mechanism leading to a tibia (leg) fracture is a forward fall. Risk factors for sustaining a skier tibia fracture include: beginners or novice skiers, less than 20 years of age, higher outdoor temperatures, and increased snow depth. Non-risk factors include ski lengths, icy conditions, and male versus female sex. The modern ski boot very closely resembles an extremely well padded short leg cast in the treatment of many orthopaedic lower extremity fractures. It of course goes to a much higher level than the former shorter boot top-level varieties. The binding release and designs have been based on the fracture strength of the adult tibia (shin) bone at the top of the modern ski boot. The treatment of most skier leg fractures includes a closed reduction and cast application for variable periods of time, with or without weight bearing allowed. However, severe misalignments of the bones can lead to later bony prominences that may be incompatible with snug, rigid, high fitting ski boots.
    [Show full text]
  • Assessment, Management and Decision Making in the Treatment Of
    Pediatric Ankle Fractures Anthony I. Riccio, MD Texas Scottish Rite Hospital for Children Update 07/2016 Pediatric Ankle Fractures The Ankle is the 2nd most Common Site of Physeal Injury in Children 10-25% of all Physeal Injuries Occur About the Ankle Pediatric Ankle Fractures Primary Concerns Are: • Anatomic Restoration of Articular Surface • Restoration of Symmetric Ankle Mortise • Preservation of Physeal Growth • Minimize Iatrogenic Physeal Injury • Avoid Fixation Across Physis in Younger Children Salter Harris Classification Prognosis and Treatment of Pediatric Ankle Fractures is Often Dictated by the Salter Harris Classification of Physeal Fractures Type I and II Fractures: Often Amenable to Closed Tx / Lower Risk of Physeal Arrest Type III and IV: More Likely to Require Operative Tx / Higher Risk of Physeal Arrest Herring JA, ed. Tachdjian’s Pediatric Orthopaedics, 5th Ed. 2014. Elsevier. Philadelphia, PA. ISOLATED DISTAL FIBULA FRACTURES Distal Fibula Fractures • The Physis is Weaker than the Lateral Ankle Ligaments – Children Often Fracture the Distal Fibula but…. – …ligamentous Injuries are Not Uncommon • Mechanism of Injury = Inversion of a Supinated Foot • SH I and II Fractures are Most Common – SH I Fractures: Average Age = 10 Years – SH II Fractures: Average Age = 12 Years Distal Fibula Fractures Lateral Ankle Tenderness SH I Distal Fibula Fracture vs. Lateral Ligamentous Injury (Sprain) Distal Fibula Fractures • Sankar et al (JPO 2008) – 37 Children – All with Open Physes, Lateral Ankle Tenderness + Normal Films – 18%: Periosteal
    [Show full text]
  • Multiplanar CT Analysis of Fifth Metatarsal Morphology
    FAIXXX10.1177/1071100715623041Foot & Ankle InternationalDeSandis et al 623041research-article2015 Article Foot & Ankle International® 2016, Vol. 37(5) 528 –536 Multiplanar CT Analysis of Fifth Metatarsal © The Author(s) 2015 Reprints and permissions: sagepub.com/journalsPermissions.nav Morphology: Implications for Operative DOI: 10.1177/1071100715623041 Management of Zone II Fractures fai.sagepub.com Bridget DeSandis, BA1, Conor Murphy, MD2, Andrew Rosenbaum, MD1, Matthew Levitsky, BA1, Quinn O’Malley1, Gabrielle Konin, MD1, and Mark Drakos, MD1 Abstract Background: Percutaneous internal fixation is currently the method of choice treating proximal zone II fifth metatarsal fractures. Complications have been reported due to poor screw placement and inadequate screw sizing. The purpose of this study was to define the morphology of the fifth metatarsal to help guide surgeons in selecting the appropriate screw size preoperatively. Methods: Multiplanar analysis of fifth metatarsal morphology was completed using computed tomographic (CT) scans from 241 patients. Specific parameters were analyzed and defined in anteroposterior (AP), lateral, and oblique views including metatarsal length, distance from the base to apex of curvature, apex medullary canal width, apex height, and fifth metatarsal angle. Results: The average metatarsal length in the AP view was 71.4 ± 6.1 mm and in the lateral view 70.4 ± 6.0 mm, with 95% of patients having lengths between 59.3 and 83.5 mm and 58.4 and 82.4 mm, respectively. The average canal width at the apex of curvature was 4.1 ± 0.9 mm in the AP view and 5.3 ± 1.1 mm in the lateral view, with 95% of patients having widths between 2.2 and 5.9 mm and 3.2 and 7.5 mm, respectively.
    [Show full text]
  • Rethinking the Evolution of the Human Foot: Insights from Experimental Research Nicholas B
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb174425. doi:10.1242/jeb.174425 REVIEW Rethinking the evolution of the human foot: insights from experimental research Nicholas B. Holowka* and Daniel E. Lieberman* ABSTRACT presumably owing to their lack of arches and mobile midfoot joints Adaptive explanations for modern human foot anatomy have long for enhanced prehensility in arboreal locomotion (see Glossary; fascinated evolutionary biologists because of the dramatic differences Fig. 1B) (DeSilva, 2010; Elftman and Manter, 1935a). Other studies between our feet and those of our closest living relatives, the great have documented how great apes use their long toes, opposable apes. Morphological features, including hallucal opposability, toe halluces and mobile ankles for grasping arboreal supports (DeSilva, length and the longitudinal arch, have traditionally been used to 2009; Holowka et al., 2017a; Morton, 1924). These observations dichotomize human and great ape feet as being adapted for bipedal underlie what has become a consensus model of human foot walking and arboreal locomotion, respectively. However, recent evolution: that selection for bipedal walking came at the expense of biomechanical models of human foot function and experimental arboreal locomotor capabilities, resulting in a dichotomy between investigations of great ape locomotion have undermined this simple human and great ape foot anatomy and function. According to this dichotomy. Here, we review this research, focusing on the way of thinking, anatomical features of the foot characteristic of biomechanics of foot strike, push-off and elastic energy storage in great apes are assumed to represent adaptations for arboreal the foot, and show that humans and great apes share some behavior, and those unique to humans are assumed to be related underappreciated, surprising similarities in foot function, such as to bipedal walking.
    [Show full text]
  • 5Th Metatarsal Fracture
    FIFTH METATARSAL FRACTURES Todd Gothelf MD (USA), FRACS, FAAOS, Dip. ABOS Foot, Ankle, Shoulder Surgeon Orthopaedic You have been diagnosed with a fracture of the fifth metatarsal bone. Surgeons This tyPe of fracture usually occurs when the ankle suddenly rolls inward. When the ankle rolls, a tendon that is attached to the fifth metatarsal bone is J. Goldberg stretched. Because the bone is weaker than the tendon, the bone cracks first. A. Turnbull R. Pattinson A. Loefler All bones heal in a different way when they break. This is esPecially true J. Negrine of the fifth metatarsal bone. In addition, the blood suPPly varies to different I. PoPoff areas, making it a lot harder for some fractures to heal without helP. Below are D. Sher descriPtions of the main Patterns of fractures of the fifth metatarsal fractures T. Gothelf and treatments for each. Sports Physicians FIFTH METATARSAL AVULSION FRACTURE J. Best This fracture Pattern occurs at the tiP of the bone (figure 1). These M. Cusi fractures have a very high rate of healing and require little Protection. Weight P. Annett on the foot is allowed as soon as the Patient is comfortable. While crutches may helP initially, walking without them is allowed. I Prefer to Place Patients in a walking boot, as it allows for more comfortable walking and Protects the foot from further injury. RICE treatment is initiated. Pain should be exPected to diminish over the first four weeks, but may not comPletely go away for several months. Follow-uP radiographs are not necessary if the Pain resolves as exPected.
    [Show full text]
  • Common Stress Fractures BRENT W
    COVER ARTICLE PRACTICAL THERAPEUTICS Common Stress Fractures BRENT W. SANDERLIN, LCDR, MC, USNR, Naval Branch Medical Clinic, Fort Worth, Texas ROBERT F. RASPA, CAPT, MC, USN, Naval Hospital Jacksonville, Jacksonville, Florida Lower extremity stress fractures are common injuries most often associated with partic- ipation in sports involving running, jumping, or repetitive stress. The initial diagnosis can be made by identifying localized bone pain that increases with weight bearing or repet- itive use. Plain film radiographs are frequently unrevealing. Confirmation of a stress frac- ture is best made using triple phase nuclear medicine bone scan or magnetic resonance imaging. Prevention of stress fractures is most effectively accomplished by increasing the level of exercise slowly, adequately warming up and stretching before exercise, and using cushioned insoles and appropriate footwear. Treatment involves rest of the injured bone, followed by a gradual return to the sport once free of pain. Recent evidence sup- ports the use of air splinting to reduce pain and decrease the time until return to full par- ticipation or intensity of exercise. (Am Fam Physician 2003;68:1527-32. Copyright© 2003 American Academy of Family Physicians) tress fractures are among the involving repetitive use of the arms, such most common sports injuries as baseball or tennis. Stress fractures of and are frequently managed the ribs occur in sports such as rowing. by family physicians. A stress Upper extremity and rib stress fractures fracture should be suspected in are far less common than lower extremity Sany patient presenting with localized stress fractures.1 bone or periosteal pain, especially if he or she recently started an exercise program Etiology and Pathophysiology or increased the intensity of exercise.
    [Show full text]
  • ASSESSMENT of FIFTH METATARSAL ETIOLOGY Daniel Reed Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 7-2008 ASSESSMENT OF FIFTH METATARSAL ETIOLOGY Daniel Reed Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Reed, Daniel, "ASSESSMENT OF FIFTH METATARSAL ETIOLOGY" (2008). All Theses. 428. https://tigerprints.clemson.edu/all_theses/428 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. ASSESSMENT OF FIFTH METATARSAL FRACTURE ETIOLOGY A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirement for the Degree Master of Science Bioengineering by Daniel Reed August 2008 Accepted by: Dr. Martine Laberge, Committee Chair Dr. Lisa Benson Dr. Larry Bowman MD ABSTRACT The fifth metatarsal “Jones Fracture” is a fracture that occurs 3.5cm distal to the tuberosity. It is an injury that is common in athletes, especially those who participate in sports with a lot of lateral movement. The Jones Fracture is known for its difficulty to heal due to non-union and re-fracture. There has been much research recently regarding in-shoe pressure distributions and their relation to shoe type, movement, and shoe surface interaction. However, only the forces along the bottom of the foot have been investigated. Literature and the direction of fracture seem to implicate a force on the lateral portion of the foot is the cause of the fracture though the exact causal forces are still largely unknown.
    [Show full text]
  • Metric and Non Metric Characteristics of Human Forefoot: a Radiological Study in Egyptian Population
    Australian Journal of Basic and Applied Sciences 2019 February; 13(2): pages 46-54 DOI: 10.22587/ajbas.2019.13.2.6 Original paper AENSI Publications Journal home page: www.ajbasweb.com Metric and Non metric characteristics of human forefoot: A radiological study in Egyptian population Samah Mohammed, Mahmoud Abozaid and Fatma Elzahraa, Fouad Abd Elbaky Department of Anatomy, Faculty of medicine, Minia University, Minia, Egypt. Correspondence Author: Samah Mohammed, Department of Anatomy, Faculty of medicine, Minia University, Minia, Egypt. Received date: 1 January 2019, Accepted date: 15 January 2018, Online date: 28 February 2019 Copyright: © 2019 Samah Mohammed et al, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Human forefoot is composed of metatarsal bones and phalanges. Their morphology and dimensions are important for proper bipedal locomotor function. Structural defects affecting forefoot bones result in foot dysfunction. The aim of the present study is to describe the morphology of the bones of forefoot and to measure their lengths and widths. A digital radiographic study was conducted on right and left feet of 100 healthy individuals (50 males and 50 females) above 21 years old. Inspection of the forefoot bones using radiographs was done to describe general shapes of bones. The lengths and widths of metatarsal bone and phalanges were measured using Digital Imaging and Communications in Medicine (DICOM) format. Mean and standard deviations were obtained for all measurements of each side of both sexes.
    [Show full text]
  • A Morphometric and Morphological Study on Dry Adult Cuboid Bones
    Review Article Clinician’s corner Images in Medicine Experimental Research Case Report Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2021/47259.14447 Original Article Postgraduate Education A Morphometric and Morphological Case Series Study on Dry Adult Cuboid Bones Research Protocol Anatomy Section Short Communication SREYA MOITRA ABSTRACT software, version 19. Students t-test was applied to find the Introduction: Precise biometric data of cuboid and difference between the mean values of the parameters. calcaneocuboid joint are not discussed very distinctly in the text Results: Mean medial length of cuboid was 33.41 mm, lateral books of Anatomy. A better knowledge of the joint surfaces of length was 19.73 mm, height was 26.17 mm, length index cuboid and biometric data would generate a three dimensional was 169.33, vertical and transverse diameters of calcaneal modeling of the calcaneocuboid joint and would help in the articular facet were 24.24 mm and 16.45 mm respectively, vertical and transverse diameters of metatarsal articular facet management of Cuboid Syndrome. were 21.32 mm and 13.85 mm respectively, depth of peroneal Aim: To study about morphological and morphometric analysis groove was 0.63mm. Concavo-convex facet with posteromedial in adult dry cuboid bone. projection and oval or reniform in shape (Type 1A) was the most Materials and Methods: This study was conducted in the common calcaneal articular facet and convex pattern was the Department of Anatomy of a Medical College using 60 dry most common metatarsal articular facet of cuboid. cuboid bones from museum. Each bone was observed for its Conclusion: Morphological characterisation of articular facet morphometric analysis as well as its pattern of calcaneal and of cuboid and its morphometric analysis help to understand the metatarsal articular facets.
    [Show full text]
  • Bones Can Tell Us More Compiled By: Nancy Volk
    Bones Can Tell Us More Compiled By: Nancy Volk Strong Bones Sometimes only a few bones are found in a location in an archeological dig. VOCABULARY A few bones can tell about the height of a person. This is possible due to the Femur ratios of the bones. It has been determined that there are relationships between the femur, tibia, humerus, and radius and a person’s height. Humerus Radius Here is a little help to identify these four bones and formulas to assist with Tibia determining the height of a person based on bone length. Humerus Femur: Humerus: The thigh is the region of the femur. The arm bone most people call the From the hip bone to the knee bone. upper arm. It is found from the elbow to the shoulder joints. Inside This Packet Radius Strong Bones 1 New York State Standards 1 Activity: Bone Relationships 2 Information for the Teacher 4 Tibia: Radius: The larger and stronger of the two bones The bone found in the forearm that New York State Standards in the leg below the knee bone. extends from the side of the elbow to Middle School In vertebrates It is recognized as the the wrist. Standard 4: Living Environment strongest weight bearing bone in the Idea 1: 1.2a, 1.2b, 1.2e, 1.2f body. Life Sciences - Post Module 3 Middle School Page 1 Activity: Bone Relationships MATERIALS NEEDED Skeleton Formulas: Tape Measure Bone relationship is represented by the following formulas: Directions and formulas P represents the person’s height. The last letter of each formula stands for the Calculator known length of the bone (femur, tibia, humerus, or radius) through measurement.
    [Show full text]
  • Normative Values for Femoral Length, Tibial Length, Andthe Femorotibial
    Article Normative Values for Femoral Length, Tibial Length, and the Femorotibial Ratio in Adults Using Standing Full-Length Radiography Stuart A Aitken MaineGeneral Medical Center, 35 Medical Center Parkway, Augusta, ME 04330, USA; [email protected] Abstract: Knowledge of the normal length and skeletal proportions of the lower limb is required as part of the evaluation of limb length discrepancy. When measuring limb length, modern standing full-length digital radiographs confer a level of clinical accuracy interchangeable with that of CT imaging. This study reports a set of normative values for lower limb length using the standing full-length radiographs of 753 patients (61% male). Lower limb length, femoral length, tibial length, and the femorotibial ratio were measured in 1077 limbs. The reliability of the measurement method was tested using the intra-class correlation (ICC) of agreement between three observers. The mean length of 1077 lower limbs was 89.0 cm (range 70.2 to 103.9 cm). Mean femoral length was 50.0 cm (39.3 to 58.4 cm) and tibial length was 39.0 cm (30.8 to 46.5 cm). The median side-to-side difference was 0.4 cm (0.2 to 0.7, max 1.8 cm) between 324 paired limbs. The mean ratio of femoral length to tibial length for the study population was 1.28:1 (range 1.16 to 1.39). A moderately strong inverse linear relationship (r = −0.35, p < 0.001, Pearson’s) was identified between tibial length and the Citation: Aitken, S.A. Normative corresponding femorotibial ratio.
    [Show full text]