Percolation, Statistical Topography, and Transport in Random Media
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Stochastic Processes and Martingales
A Stochastic Processes and Martingales A.1 Stochastic Processes Let I be either IINorIR+.Astochastic process on I with state space E is a family of E-valued random variables X = {Xt : t ∈ I}. We only consider examples where E is a Polish space. Suppose for the moment that I =IR+. A stochastic process is called cadlag if its paths t → Xt are right-continuous (a.s.) and its left limits exist at all points. In this book we assume that every stochastic process is cadlag. We say a process is continuous if its paths are continuous. The above conditions are meant to hold with probability 1 and not to hold pathwise. A.2 Filtration and Stopping Times The information available at time t is expressed by a σ-subalgebra Ft ⊂F.An {F ∈ } increasing family of σ-algebras t : t I is called a filtration.IfI =IR+, F F F we call a filtration right-continuous if t+ := s>t s = t. If not stated otherwise, we assume that all filtrations in this book are right-continuous. In many books it is also assumed that the filtration is complete, i.e., F0 contains all IIP-null sets. We do not assume this here because we want to be able to change the measure in Chapter 4. Because the changed measure and IIP will be singular, it would not be possible to extend the new measure to the whole σ-algebra F. A stochastic process X is called Ft-adapted if Xt is Ft-measurable for all t. If it is clear which filtration is used, we just call the process adapted.The {F X } natural filtration t is the smallest right-continuous filtration such that X is adapted. -
Lecture 13: Financial Disasters and Econophysics
Lecture 13: Financial Disasters and Econophysics Big problem: Power laws in economy and finance vs Great Moderation: (Source: http://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/power-curves-what- natural-and-economic-disasters-have-in-common Analysis of big data, discontinuous change especially of financial sector, where efficient market theory missed the boat has drawn attention of specialists from physics and mathematics. Wall Street“quant”models may have helped the market implode; and collapse spawned econophysics work on finance instability. NATURE PHYSICS March 2013 Volume 9, No 3 pp119-197 : “The 2008 financial crisis has highlighted major limitations in the modelling of financial and economic systems. However, an emerging field of research at the frontiers of both physics and economics aims to provide a more fundamental understanding of economic networks, as well as practical insights for policymakers. In this Nature Physics Focus, physicists and economists consider the state-of-the-art in the application of network science to finance.” The financial crisis has made us aware that financial markets are very complex networks that, in many cases, we do not really understand and that can easily go out of control. This idea, which would have been shocking only 5 years ago, results from a number of precise reasons. What does physics bring to social science problems? 1- Heterogeneous agents – strange since physics draws strength from electron is electron is electron but STATISTICAL MECHANICS --- minority game, finance artificial agents, 2- Facility with huge data sets – data-mining for regularities in time series with open eyes. 3- Network analysis 4- Percolation/other models of “phase transition”, which directs attention at boundary conditions AN INTRODUCTION TO ECONOPHYSICS Correlations and Complexity in Finance ROSARIO N. -
Processes on Complex Networks. Percolation
Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation. -
Pdf File of Second Edition, January 2018
Probability on Graphs Random Processes on Graphs and Lattices Second Edition, 2018 GEOFFREY GRIMMETT Statistical Laboratory University of Cambridge copyright Geoffrey Grimmett Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom 2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 56 Figures copyright Geoffrey Grimmett Contents Preface ix 1 Random Walks on Graphs 1 1.1 Random Walks and Reversible Markov Chains 1 1.2 Electrical Networks 3 1.3 FlowsandEnergy 8 1.4 RecurrenceandResistance 11 1.5 Polya's Theorem 14 1.6 GraphTheory 16 1.7 Exercises 18 2 Uniform Spanning Tree 21 2.1 De®nition 21 2.2 Wilson's Algorithm 23 2.3 Weak Limits on Lattices 28 2.4 Uniform Forest 31 2.5 Schramm±LownerEvolutionsÈ 32 2.6 Exercises 36 3 Percolation and Self-Avoiding Walks 39 3.1 PercolationandPhaseTransition 39 3.2 Self-Avoiding Walks 42 3.3 ConnectiveConstantoftheHexagonalLattice 45 3.4 CoupledPercolation 53 3.5 Oriented Percolation 53 3.6 Exercises 56 4 Association and In¯uence 59 4.1 Holley Inequality 59 4.2 FKG Inequality 62 4.3 BK Inequalitycopyright Geoffrey Grimmett63 vi Contents 4.4 HoeffdingInequality 65 4.5 In¯uenceforProductMeasures 67 4.6 ProofsofIn¯uenceTheorems 72 4.7 Russo'sFormulaandSharpThresholds 80 4.8 Exercises 83 5 Further Percolation 86 5.1 Subcritical Phase 86 5.2 Supercritical Phase 90 5.3 UniquenessoftheIn®niteCluster 96 5.4 Phase Transition 99 5.5 OpenPathsinAnnuli 103 5.6 The Critical Probability in Two Dimensions 107 -
6 Mar 2019 Strict Local Martingales and the Khasminskii Test for Explosions
Strict Local Martingales and the Khasminskii Test for Explosions Aditi Dandapani∗† and Philip Protter‡§ March 7, 2019 Abstract We exhibit sufficient conditions such that components of a multidimen- sional SDE giving rise to a local martingale M are strict local martingales or martingales. We assume that the equations have diffusion coefficients of the form σ(Mt, vt), with vt being a stochastic volatility term. We dedicate this paper to the memory of Larry Shepp 1 Introduction In 2007 P.L. Lions and M. Musiela (2007) gave a sufficient condition for when a unique weak solution of a one dimensional stochastic volatility stochastic differen- tial equation is a strict local martingale. Lions and Musiela also gave a sufficient condition for it to be a martingale. Similar results were obtained by L. Andersen and V. Piterbarg (2007). The techniques depend at one key stage on Feller’s test for explosions, and as such are uniquely applicable to the one dimensional case. Earlier, in 2002, F. Delbaen and H. Shirakawa (2002) gave a seminal result giving arXiv:1903.02383v1 [q-fin.MF] 6 Mar 2019 necessary and sufficient conditions for a solution of a one dimensional stochastic differential equation (without stochastic volatility) to be a strict local martingale or not. This was later extended by A. Mijatovic and M. Urusov (2012) and then by ∗Applied Mathematics Department, Columbia University, New York, NY 10027; email: [email protected]; Currently at Ecole Polytechnique, Palaiseau, France. †Supported in part by NSF grant DMS-1308483 ‡Statistics Department, Columbia University, New York, NY 10027; email: [email protected]. -
Mean Field Methods for Classification with Gaussian Processes
Mean field methods for classification with Gaussian processes Manfred Opper Neural Computing Research Group Division of Electronic Engineering and Computer Science Aston University Birmingham B4 7ET, UK. opperm~aston.ac.uk Ole Winther Theoretical Physics II, Lund University, S6lvegatan 14 A S-223 62 Lund, Sweden CONNECT, The Niels Bohr Institute, University of Copenhagen Blegdamsvej 17, 2100 Copenhagen 0, Denmark winther~thep.lu.se Abstract We discuss the application of TAP mean field methods known from the Statistical Mechanics of disordered systems to Bayesian classifi cation models with Gaussian processes. In contrast to previous ap proaches, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given. 1 Modeling with Gaussian Processes Bayesian models which are based on Gaussian prior distributions on function spaces are promising non-parametric statistical tools. They have been recently introduced into the Neural Computation community (Neal 1996, Williams & Rasmussen 1996, Mackay 1997). To give their basic definition, we assume that the likelihood of the output or target variable T for a given input s E RN can be written in the form p(Tlh(s)) where h : RN --+ R is a priori assumed to be a Gaussian random field. If we assume fields with zero prior mean, the statistics of h is entirely defined by the second order correlations C(s, S') == E[h(s)h(S')], where E denotes expectations 310 M Opper and 0. Winther with respect to the prior. Interesting examples are C(s, s') (1) C(s, s') (2) The choice (1) can be motivated as a limit of a two-layered neural network with infinitely many hidden units with factorizable input-hidden weight priors (Williams 1997). -
Geometric Brownian Motion with Affine Drift and Its Time-Integral
Geometric Brownian motion with affine drift and its time-integral ⋆ a b, c Runhuan Feng , Pingping Jiang ∗, Hans Volkmer aDepartment of Mathematics, University of Illinois at Urbana-Champaign, Illinois, USA bSchool of Management and Economics,The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China School of Management, University of Science and Technology of China, Hefei, Anhui, 230026, P.R.China cDepartment of Mathematical Sciences, University of Wisconsin–Milwaukee, Wisconsin, USA Abstract The joint distribution of a geometric Brownian motion and its time-integral was derived in a seminal paper by Yor (1992) using Lamperti’s transformation, leading to explicit solutions in terms of modified Bessel functions. In this paper, we revisit this classic result using the simple Laplace transform approach in connection to the Heun differential equation. We extend the methodology to the geometric Brownian motion with affine drift and show that the joint distribution of this process and its time-integral can be determined by a doubly-confluent Heun equation. Furthermore, the joint Laplace transform of the process and its time-integral is derived from the asymptotics of the solutions. In addition, we provide an application by using the results for the asymptotics of the double-confluent Heun equation in pricing Asian options. Numerical results show the accuracy and efficiency of this new method. Keywords: Doubly-confluent Heun equation, geometric Brownian motion with affine drift, Lamperti’s transformation, asymptotics, boundary value problem. ⋆R. Feng is supported by an endowment from the State Farm Companies Foundation. P. Jiang arXiv:2012.09661v1 [q-fin.MF] 17 Dec 2020 is supported by the Postdoctoral Science Foundation of China (No.2020M671853) and the National Natural Science Foundation of China (No. -
Understanding Complex Systems: a Communication Networks Perspective
1 Understanding Complex Systems: A Communication Networks Perspective Pavlos Antoniou and Andreas Pitsillides Networks Research Laboratory, Computer Science Department, University of Cyprus 75 Kallipoleos Street, P.O. Box 20537, 1678 Nicosia, Cyprus Telephone: +357-22-892687, Fax: +357-22-892701 Email: [email protected], [email protected] Technical Report TR-07-01 Department of Computer Science University of Cyprus February 2007 Abstract Recent approaches on the study of networks have exploded over almost all the sciences across the academic spectrum. Over the last few years, the analysis and modeling of networks as well as networked dynamical systems have attracted considerable interdisciplinary interest. These efforts were driven by the fact that systems as diverse as genetic networks or the Internet can be best described as complex networks. On the contrary, although the unprecedented evolution of technology, basic issues and fundamental principles related to the structural and evolutionary properties of networks still remain unaddressed and need to be unraveled since they affect the function of a network. Therefore, the characterization of the wiring diagram and the understanding on how an enormous network of interacting dynamical elements is able to behave collectively, given their individual non linear dynamics are of prime importance. In this study we explore simple models of complex networks from real communication networks perspective, focusing on their structural and evolutionary properties. The limitations and vulnerabilities of real communication networks drive the necessity to develop new theoretical frameworks to help explain the complex and unpredictable behaviors of those networks based on the aforementioned principles, and design alternative network methods and techniques which may be provably effective, robust and resilient to accidental failures and coordinated attacks. -
Critical Percolation As a Framework to Analyze the Training of Deep Networks
Published as a conference paper at ICLR 2018 CRITICAL PERCOLATION AS A FRAMEWORK TO ANALYZE THE TRAINING OF DEEP NETWORKS Zohar Ringel Rodrigo de Bem∗ Racah Institute of Physics Department of Engineering Science The Hebrew University of Jerusalem University of Oxford [email protected]. [email protected] ABSTRACT In this paper we approach two relevant deep learning topics: i) tackling of graph structured input data and ii) a better understanding and analysis of deep networks and related learning algorithms. With this in mind we focus on the topological classification of reachability in a particular subset of planar graphs (Mazes). Doing so, we are able to model the topology of data while staying in Euclidean space, thus allowing its processing with standard CNN architectures. We suggest a suitable architecture for this problem and show that it can express a perfect solution to the classification task. The shape of the cost function around this solution is also derived and, remarkably, does not depend on the size of the maze in the large maze limit. Responsible for this behavior are rare events in the dataset which strongly regulate the shape of the cost function near this global minimum. We further identify an obstacle to learning in the form of poorly performing local minima in which the network chooses to ignore some of the inputs. We further support our claims with training experiments and numerical analysis of the cost function on networks with up to 128 layers. 1 INTRODUCTION Deep convolutional networks have achieved great success in the last years by presenting human and super-human performance on many machine learning problems such as image classification, speech recognition and natural language processing (LeCun et al. -
Jump-Diffusion Models for Asset Pricing in Financial Engineering
J.R. Birge and V. Linetsky (Eds.), Handbooks in OR & MS, Vol. 15 Copyright © 2008 Elsevier B.V. All rights reserved DOI: 10.1016/S0927-0507(07)15002-7 Chapter 2 Jump-Diffusion Models for Asset Pricing in Financial Engineering S.G. Kou Department of Industrial Engineering and Operations Research, Columbia University E-mail: [email protected] Abstract In this survey we shall focus on the following issues related to jump-diffusion mod- els for asset pricing in financial engineering. (1) The controversy over tailweight of distributions. (2) Identifying a risk-neutral pricing measure by using the rational ex- pectations equilibrium. (3) Using Laplace transforms to pricing options, including European call/put options, path-dependent options, such as barrier and lookback op- tions. (4) Difficulties associated with the partial integro-differential equations related to barrier-crossing problems. (5) Analytical approximations for finite-horizon Amer- ican options with jump risk. (6) Multivariate jump-diffusion models. 1Introduction There is a large literature on jump-diffusion models in finance, including several excellent books, e.g. the books by Cont and Tankov (2004), Kijima (2002). So a natural question is why another survey article is needed. What we attempt to achieve in this survey chapter is to emphasis some points that have not been well addressed in previous surveys. More precisely we shall focus on the following issues. (1) The controversy over tailweight of distributions. An empirical motiva- tion for using jump-diffusion models comes from the fact that asset return distributions tend to have heavier tails than those of normal dis- tribution. However, it is not clear how heavy the tail distributions are, as some people favor power-type distributions, others exponential-type distributions. -
1 the Ito Integral
Derivative Securities, Fall 2010 Mathematics in Finance Program Courant Institute of Mathematical Sciences, NYU Jonathan Goodman http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec10/resources.html Week 6 1 The Ito integral The Black Scholes reasoning asks us to apply calculus, stochastic calculus, to expressions involving differentials of Brownian motion and other diffusion pro- cesses. To do this, we define the Ito integral with respect to Brownian motion and a general diffusion. Things discussed briefly and vaguely here are discussed in more detail and at greater length in Stochastic calculus. Suppose Xt is a diffusion process that satisfies (18) and (19) from week 5. Suppose that ft is another stochastic process that is adapted to the same filtration F. The Ito integral is Z t Yt = fs dXs : (1) 0 You could call this the \indefinite integral" because we care how the answer depends on t. In particular, the Ito integral is one of the ways to construct a new stochastic process, Yt, from old ones ft and Xt. It is not possible to define (1) unless ft is adapted. If ft is allowed to depend 0 on future values Xt0 (t > t), then the integral may not make sense or it may not have the properties we expect. The essential technical idea in the definition of (1) is that dXs is in the future of s. If we think that dXs = Xs+ds − Xs, then we must take ds > 0 (but infinitely close to zero). This implies that if Xt is a martingale, then Yt also is a martingale. -
Probability on Graphs Random Processes on Graphs and Lattices
Probability on Graphs Random Processes on Graphs and Lattices GEOFFREY GRIMMETT Statistical Laboratory University of Cambridge c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom 2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 44 Figures c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 Contents Preface ix 1 Random walks on graphs 1 1.1 RandomwalksandreversibleMarkovchains 1 1.2 Electrical networks 3 1.3 Flowsandenergy 8 1.4 Recurrenceandresistance 11 1.5 Polya's theorem 14 1.6 Graphtheory 16 1.7 Exercises 18 2 Uniform spanning tree 21 2.1 De®nition 21 2.2 Wilson's algorithm 23 2.3 Weak limits on lattices 28 2.4 Uniform forest 31 2.5 Schramm±LownerevolutionsÈ 32 2.6 Exercises 37 3 Percolation and self-avoiding walk 39 3.1 Percolationandphasetransition 39 3.2 Self-avoiding walks 42 3.3 Coupledpercolation 45 3.4 Orientedpercolation 45 3.5 Exercises 48 4 Association and in¯uence 50 4.1 Holley inequality 50 4.2 FKGinequality 53 4.3 BK inequality 54 4.4 Hoeffdinginequality 56 c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 vi Contents 4.5 In¯uenceforproductmeasures 58 4.6 Proofsofin¯uencetheorems 63 4.7 Russo'sformulaandsharpthresholds 75 4.8 Exercises 78 5 Further percolation 81 5.1 Subcritical phase 81 5.2 Supercritical phase 86 5.3 Uniquenessofthein®nitecluster 92 5.4 Phase transition 95 5.5 Openpathsinannuli 99 5.6 The critical probability in two dimensions 103 5.7 Cardy's formula 110 5.8 The