Geologic History of the Blackbird Co-Cu District in the Lemhi Subbasin of the Belt-Purcell Basin

Total Page:16

File Type:pdf, Size:1020Kb

Geologic History of the Blackbird Co-Cu District in the Lemhi Subbasin of the Belt-Purcell Basin 8. OLD G The Geological Society of America Special Paper 522 OPEN ACCESS Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin Arthur A. Bookstrom Stephen E. Box Pamela M. Cossette Thomas P. Frost U.S. Geological Survey, 904 W. Riverside Avenue, Spokane, Washington 99201, USA Virginia S. Gillerman Idaho Geological Survey, 322 E. Front Street, Boise, Idaho 83702, USA George R. King Formation Capital Corporation, 812 Shoup Street, Salmon, Idaho 83467, USA N. Alex Zirakparvar American Museum of Natural History, New York, New York 10024, USA ABSTRACT The Blackbird cobalt-copper (Co-Cu) district in the Salmon River Mountains of east-central Idaho occupies the central part of the Idaho cobalt belt—a north- west-elongate, 55-km-long belt of Co-Cu occurrences, hosted in grayish siliciclastic metasedimentary strata of the Lemhi subbasin (of the Mesoproterozoic Belt-Purcell Basin). The Blackbird district contains at least eight stratabound ore zones and many discordant lodes, mostly in the upper part of the banded siltite unit of the Apple Creek Formation of Yellow Lake, which generally consists of interbedded siltite and argillite. In the Blackbird mine area, argillite beds in six stratigraphic intervals are altered to biotitite containing over 75 vol% of greenish hydrothermal biotite, which is preferentially mineralized. Past production and currently estimated resources of the Blackbird district total ~17 Mt of ore, averaging 0.74% Co, 1.4% Cu, and 1.0 ppm Au (not including downdip projections of ore zones that are open downward). A compilation of relative-age rela- tionships and isotopic age determinations indicates that most cobalt mineralization occurred in Mesoproterozoic time, whereas most copper mineralization occurred in Cretaceous time. Mesoproterozoic cobaltite mineralization accompanied and followed dynamother- mal metamorphism and bimodal plutonism during the Middle Mesoproterozoic East Kootenay orogeny (ca. 1379–1325 Ma), and also accompanied Grenville-age (Late Meso- proterozoic) thermal metamorphism (ca. 1200–1000 Ma). Stratabound cobaltite-biotite Bookstrom, A.A., Box, S.E., Cossette, P.M., Frost, T.P., Gillerman, V.S., King, G.R., and Zirakparvar, N.A., 2016, Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin, in MacLean, J.S., and Sears, J.W., eds., Belt Basin: Window to Mesoproterozoic Earth: Geological Society of America Special Paper 522, p. 185–219, doi:10.1130/2016.2522(08). © 2016 The Authors. Gold Open Access: This chapter is published under the terms of the CC-BY license and is available open access on www.gsapubs.org. 185 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/980372/spe522-08.pdf by guest on 28 September 2021 186 Bookstrom et al. ore zones typically contain cobaltite1 in a matrix of biotitite ± tourmaline ± minor xeno- time (ca. 1370–1320 Ma) ± minor chalcopyrite ± sparse allanite ± sparse microscopic native gold in cobaltite. Such cobaltite-biotite lodes are locally folded into tight F2 folds with axial-planar S2 cleavage and schistosity. Discordant replacement-style lodes of cobaltite2-biotite ore ± xenotime2 (ca. 1320–1270 Ma) commonly follow S2 fractures and fabrics. Discordant quartz-biotite and quartz-tourmaline breccias, and veins contain cobaltite3 ± xenotime3 (ca. 1058–990 Ma). Mesoproterozoic cobaltite deposition was followed by: (1) within-plate plutonism (530–485 Ma) and emplacement of mafic dikes (which cut cobaltite lodes but are cut by quartz-Fe-Cu-sulfide veins); (2) garnet-grade metamorphism (ca. 151–93 Ma); (3) Fe-Cu-sulfide mineralization (ca. 110–92 Ma); and (4) minor quartz ± Au-Ag ± Bi mineralization (ca. 92–83 Ma). Cretaceous Fe-Cu-sulfide vein, breccia, and replacement-style deposits contain various combinations of chalcopyrite ± pyrrhotite ± pyrite ± cobaltian arsenopyrite (not cobaltite) ± arsenopyrite ± quartz ± siderite ± monazite (ca. 144–88 Ma but mostly 110–92 Ma) ± xenotime (104–93 Ma). Highly radiogenic Pb (in these sulfides) and Sr (in siderite) indicate that these elements resided in Mesoproterozoic source rocks until they were mobilized after ca. 100 Ma. Fe-Cu-sulfide veins, breccias, and replacement deposits appear relatively undeformed and generally lack metamorphic fabrics. Composite Co-Cu-Au ore contains early cobaltite-biotite lodes, cut by Fe-Cu-sul- fide veins and breccias, or overprinted by Fe-Cu-sulfide replacement-style deposits, and locally cut by quartz veinlets ± Au-Ag ± Bi minerals. INTRODUCTION west-trending belt of Cu-Co mines, prospects, and geochemi- cal anomalies. The Idaho cobalt belt (ICB) is ~55 km long and Blackbird Cobalt-Copper (Co-Cu) District extends ~27.5 km to the southeast and northwest of its centroid. Broad ridges are deeply weathered to saprolite, and hillsides Location are mostly covered with talus and periglacial colluvium. Bed- The Blackbird Co-Cu district is in the Salmon River Moun- rock outcrops are sparse, except along steep upper slopes and tains of east-central Idaho and is ~35 km west-southwest of the road cuts. town of Salmon, Idaho (Figs. 1A and 1B). The Salmon River As shown in Figure 1B, the geologically defined Blackbird Mountains are interpreted as an uplifted and dissected plateau district is within the legally defined Blackbird Mining District, with broad ridges at nearly concordant elevations, incised by which is wider but shorter than the Idaho cobalt belt, and includes steep-walled tributaries to Salmon River Canyon, which is epithermal gold-silver (Au-Ag) deposits outside of the Idaho ~1.5 km deep. The Blackbird district occupies the central, wid- cobalt belt. The Blackbird mine area is in the west-central part of est, and most-mineralized part of the Idaho cobalt belt, a north- the Blackbird district, where it is elongate northwest. Figure 1. Simplified geologic map of the Salmon River Mountains with a tectonic index map (inset A) showing selected Precambrian features: (A) Tectonic index map (inset) showing the Idaho cobalt belt (ICB) in relation to the Mesoproterozoic Belt-Purcell Basin (Y) and the Lemhi subbasin (after O’Neill et al., 2007; Box et al., 2012; Burmester et al., 2013). Basement domains that surround or extend under different parts of the Belt-Purcell Basin include the Archean Wyoming Province (A), Medicine Hat block (A), and Paleoproterozoic-Neoarchean Clearwater block (Clwtr Block, XA) after Vervoort et al. (2015) and Wang (2015); Paleoproterozoic Selway terrane (X) after Foster et al. (2006). Major faults of the Great Falls tectonic zone (GFTZ [X] and thrust belt [XA]) are from O’Neill (1993) and Sims et al. (2004). The Perry line (PL) is a Belt Basin growth fault (after Winston, 1986). The eastern margin of the East Kootenay orogen (Y) is drawn to include sites where igneous or metamorphic minerals yield isotopic age determinations between ca. 1370 and 1320 Ma. Other features shown include the Great Divide megashear (GDM; after O’Neill et al., 2007), the Sheep Creek Cu-Co deposit (SC; after Graham et al., 2012), the rifted continental margin (RCM; after O’Neill et al., 2007), and accreted oceanic terranes (Pz-Mz—Paleozoic to Mesozoic). (B) Simplified geologic map of the Salmon River Mountains, after Evans and Green (2003), showing selected Co-Cu ore zones and prospects of the Idaho cobalt belt (after Johnson et al., 1998), all of which are in Mesoproterozoic strata of the Lemhi subbasin within the Poison Creek thrust plate. Stippling represents the southern boundary of the regional garnet zone (after Lewis et al., 2012). The Salmon Canyon fault is interpreted here as a thrust fault, which may have been a southeast-vergent thrust during the Nevadan orogeny, but may have been reactivated as a northwest-dipping lateral ramp during northeast-vergent thrusting related to the Sevier orogeny (as modeled by Skipp, 1987). Garnet-bearing rocks south of this fault are likely in its footwall, or in that of the Iron Lake thrust fault, or both. Also shown are boundaries of the legally defined Blackbird mining district (after Ross, 1941), the Blackbird Co-Cu-Au dis- trict (as defined geologically), and the Blackbird mine area, which is within the fault-bounded Blackbird structural block (Bsb) of Vhay (1948). Other abbreviated labels indicate the Salmon River (SR), the Big Deer Creek fault (BDf), and the Poison Creek fault (PCf). Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/980372/spe522-08.pdf by guest on 28 September 2021 Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin 187 Regional Geologic Setting Province and the Medicine Hat block. As shown in Figure 1A, Co-Cu mines and prospects of the ICB and the Blackbird the western Belt-Purcell basin and most of the Lemhi subbasin district are hosted in Mesoproterozoic metasedimentary rocks are within the East Kootenay orogen, which underwent dynamo- of the Lemhi subbasin of the Belt-Purcell Basin (Fig. 1A). The thermal metamorphism and plutonism in Ectasian time. Lemhi subbasin probably is underlain by cratonized oceanic The Belt-Purcell Basin and the Lemhi subbasin also are rocks of the Paleoproterozoic Selway terrane along the Great within the Cordilleran orogen (Fig. 2A), which underwent oro- Falls tectonic zone between Archean terranes of the Wyoming genesis and plutonism from Late Jurassic through Cretaceous to 114°30'W B C ru A B le s a h BRITISH r y ALBERTA w COLUMBIA a G t u e r l c o h ro CANADA E g f 49°N a a e u n lt s t t ic USA Grt RCM z K o RC n Clrwtr o ) e M Belt-Purcell lt BlocBlockk o u t Medicine Ha a e n F (XA)(XA) basin (Y) Block (A)G Selway o n y s a FTZ terrane (X n g y a RC c in M MONTANA x r o er p ro SC iv S IDAHO Helena WASHINGTON g R t e sub-basin o n g Salmon Canyon n H ( o Accreted Y PL Copper ult lm ) thrust belt (XA) n fa Sa terranes Salmon Wyomin anyo Salmon C (Pz-Mz) IC Province SR .
Recommended publications
  • Abstract in PDF Format
    PGM Associations in Copper-Rich Sulphide Ore of the Oktyabr Deposit, Talnakh Deposit Group, Russia Olga A. Yakovleva1, Sergey M. Kozyrev1 and Oleg I. Oleshkevich2 1Institute Gipronickel JS, St. Petersburg, Russia 2Mining and Metallurgical Company “Noril’sk Nickel” JS, Noril’sk, Russia e-mail: [email protected] The PGM assemblages of the Cu-rich 6%; the Ni content ranges 0.8 to 1.3%, and the ratio sulphide ores occurring in the western exocontact Cu/S = 0.1-0.2. zone of the Talnakh intrusion and the Kharaelakh Pyrrhotite-chalcopyrite ore occurs at the massive orebody have been studied. Eleven ore top of ore horizons. The ore-mineral content ranges samples, weighing 20 to 200 kg, were processed 50 to 60%, and pyrrhotite amount is <15%. The ore using gravity and flotation-gravity techniques. As a grades 1.1 to 1.3% Ni, and the ratio Cu/S = 0.35- result, the gravity concentrates were obtained from 0.7. the ores and flotation products. In the gravity Chalcopyrite ore occurs at the top and on concentrates, more than 20,000 PGM grains were the flanks of the orebodies. The concentration of found and identified, using light microscopy and sulphides ranges 50 to 60%, and pyrrhotite amount EPMA. The textural and chemical characteristics of is <1%; the Ni content ranges 1.3 to 3.4%, and the PGM were documented, as well as the PGM ratio Cu/S = 0.8-0.9. distribution in different size fractions. Also, the The ore types are distinctly distinguished balance of Pt, Pd and Au distribution in ores and by the PGE content which directly depends on the process products and the PGM mass portions in chalcopyrite quantity, but not on the total sulphide various ore types were calculated.
    [Show full text]
  • Inverted Metamorphic Sequence in the Sikkim Himalayas: Crystallization History, P–T Gradient and Implications
    J. metamorphic Geol., 2004, 22, 395–412 doi:10.1111/j.1525-1314.2004.00522.x Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P–T gradient and implications S. DASGUPTA1 ,J.GANGULY2 AND S. NEOGI3 1Department of Geological Sciences, Jadavpur University, Kolkata 700 032, India 2Department of Geosciences, University of Arizona, Tucson 85721, AZ, USA ([email protected]) 3Central Petrology Laboratory, Geological Survey of India, Kolkata 700 016, India ABSTRACT The metapelitic rocks of the Sikkim Himalayas show an inverted metamorphic sequence (IMS) of the complete Barrovian zones from chlorite to sillimanite + K-feldspar, with the higher grade rocks appearing at progressively higher structural levels. Within the IMS, four groups of major planar structures, S1,S2 and S3 were recognised. The S2 structures are pervasive throughout the Barrovian sequence, and are sub-parallel to the metamorphic isograds. The mineral growth in all zones is dominantly syn-S2. The disposition of the metamorphic zones and structural features show that the zones were folded as a northerly plunging antiform. Significant bulk compositional variation, with consequent changes of mineralogy, occurs even at the scale of a thin section in some garnet zone rocks. The results of detailed petrographic and thermobarometric studies of the metapelites along a roughly E–W transect show progressive increase of both pressure and temperature with increasing structural levels in the entire IMS. This is contrary to all models that call for thermal inversion as a possible reason for the origin of the IMS. Also, the observation of the temporal relation between crystallization and S2 structures is problematic for models of post-/late-metamorphic tectonic inversion by recumbent folding or thrusting.
    [Show full text]
  • LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments
    minerals Article Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments Gabriel Ziwa 1,2,*, Rich Crane 1,2 and Karen A. Hudson-Edwards 1,2 1 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; [email protected] (R.C.); [email protected] (K.A.H.-E.) 2 Camborne School of Mines, University of Exeter, Penryn TR10 9FE, UK * Correspondence: [email protected] Abstract: Cobalt is recognised by the European Commission as a “Critical Raw Material” due to its irreplaceable functionality in many types of modern technology, combined with its current high-risk status associated with its supply. Despite such importance, there remain major knowledge gaps with regard to the geochemistry, mineralogy, and microbiology of cobalt-bearing environments, particu- larly those associated with ore deposits and subsequent mining operations. In such environments, high concentrations of Co (up to 34,400 mg/L in mine water, 14,165 mg/kg in tailings, 21,134 mg/kg in soils, and 18,434 mg/kg in stream sediments) have been documented. Co is contained in ore and mine waste in a wide variety of primary (e.g., cobaltite, carrolite, and erythrite) and secondary (e.g., erythrite, heterogenite) minerals. When exposed to low pH conditions, a number of such minerals are 2+ known to undergo dissolution, typically forming Co (aq). At circumneutral pH, such aqueous Co can then become immobilised by co-precipitation and/or sorption onto Fe and Mn(oxyhydr)oxides. This paper brings together contemporary knowledge on such Co cycling across different mining environments.
    [Show full text]
  • Sulfide Mineralogy in the Ballachulish Contact Metamorphic Aureole
    Stockholm University Bachelor Thesis (15 hp) November 2012 Sulfide mineralogy in the Ballachulish contact metamorphic Aureole Ossian Åström View towards Beinn a’ Bheithir, Ballachulish Igneous complex, across Loch Leven. ©Bob Hamilton. Abstract 16 samples of increasing metamorphic grade from the Ballachulish Igneous Complex and Aureole, located in the west of Scotland, were studied in order to analyze the sulfide mineralogy and to what extent they were affected by contact metamorphism. The samples were collected from two lithologies, the Creran Succession and the Ballachulish Slate lithology, as well as from the igneous complex. The sulfides of main interest in the samples are pyrite and pyrrhotite. At the onset of contact metamorphism, pyrite disappears while pyrrhotite gets more abundant as metamorphic grade increases. Pyrrhotite also undergoes multiple changes such as 1) elongation and thinning of the grains, 2) development of 120° grain-boundaries, 3) development of pyrite-zones within the pyrrhotite and 4) the decomposition of pyrrhotite and alignment of pyrite along its grain-boundaries at high temperature. The elongation of the grains occurs in both the Creran Succession and the Ballachulish Slate. The rest of the textures, however, can only be found in the Creran Succession. The two lithologies differ by the high graphite content in the Ballachulish Slate. The elongated grains as well as the pyrite inclusions in the pyrrhotite both are strong evidence of recrystallization. The absence of pyrite in the Ballachulish Slate was most probably caused by the buffering properties of the graphite-rich fluid in these rocks, causing more reducing conditions. There is evidence against a heavy, pervasive fluid flow through the aureole.
    [Show full text]
  • Cosalite Pb2bi2s5 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Cosalite Pb2Bi2S5 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Prismatic crystals elongated k [001], to 8 cm; flexible capillary fibers; commonly massive in aggregates of radiating prismatic, fibrous, or feathery forms. Physical Properties: Cleavage: Very rare. Fracture: Uneven. Tenacity: Fibers are flexible. Hardness = 2.5–3 VHN = n.d. D(meas.) = 6.86–6.99 D(calc.) = 7.12 Optical Properties: Opaque. Color: Lead-gray to steel-gray to silver-white; in polished section, white, with only a trace of cream. Streak: Black. Luster: Metallic. Pleochroism: Weak. Anisotropism: Weak, but distinct in oil. R1–R2: (400) 48.2–51.4, (420) 47.0–50.3, (440) 45.9–49.5, (460) 44.9–48.7, (480) 43.9–47.9, (500) 43.0–47.1, (520) 42.2–46.4, (540) 41.6–45.9, (560) 41.1–45.5, (580) 40.8–45.3, (600) 40.5–45.2, (620) 40.4–45.2, (640) 40.2–45.2, (660) 40.1–45.2, (680) 40.1–45.2, (700) 40.0–45.1 Cell Data: Space Group: P bnm. a = 19.09 b = 23.87 c = 4.055 Z = 8 X-ray Powder Pattern: Hagidaira mine, Gumma Prefecture, Japan. 3.44 (100), 2.81 (30), 3.37 (23), 2.96 (22), 1.911 (17), 2.13 (15), 3.72 (14) Chemistry: (1) (2) (3) Pb 38.68 39.55 41.75 Cu 2.02 2.71 Fe 0.25 Bi 42.38 40.21 42.10 S 16.59 17.20 16.15 rem.
    [Show full text]
  • Clay Mineral Dating of Displacement on the Sronlairig Fault: Implications for Mesozoic and Cenozoic Tectonic Evolution in Northern Scotland
    Clay Minerals (2019), 54, 181–196 doi:10.1180/clm.2019.25 Article Clay mineral dating of displacement on the Sronlairig Fault: implications for Mesozoic and Cenozoic tectonic evolution in northern Scotland Simon J. Kemp1*, Martin R. Gillespie2, Graham A. Leslie2, Horst Zwingmann3 and S. Diarmad G. Campbell2 1British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK; 2British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, UK and 3Department of Geology and Mineralogy, Kyoto University, Kyoto, Japan Abstract Temporary excavations during the construction of the Glendoe Hydro Scheme above Loch Ness in the Highlands of Scotland exposed a clay-rich fault gouge in Dalradian Supergroup psammite. The gouge coincides with the mapped trace of the subvertical Sronlairig Fault, a feature related in part to the Great Glen and Ericht–Laidon faults, which had been interpreted to result from brittle deformation during the Caledonian orogeny (c. 420–390 Ma). Exposure of this mica-rich gouge represented an exceptional opportunity to constrain the timing of the gouge-producing movement on the Sronlairig Fault using isotopic analysis to date the growth of authigenic (essentially synkinematic) clay mineralization. A series of fine-size separates was isolated prior to K–Ar analysis. Novel, capillary-encapsulated X-ray diffraction analysis was employed to ensure nearly perfect, random orientation and to facilitate the identification and quantifica- tion of mica polytypes. Coarser size fractions are composed of greater proportions of the 2M1 illite polytype. Finer size fractions show increasing proportions of the 1M illite polytype, with no evidence of 2M1 illite in the finest fractions.
    [Show full text]
  • Mineralogy of Cu-Ni-PGE Ore and Sequence of Events in the Copper Cliff South Mine, Sudbury, Ontario
    Mineralogy of Cu-Ni-PGE ore and Sequence of Events in the Copper Cliff South Mine, Sudbury, Ontario Zsuzsanna Magyarosi, David H. Watkinson, and Peter C. Jones Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6 e-mail: [email protected] The Sudbury Structure is the largest Cu- country rocks are Copper Cliff rhyolite and Ni-PGE producer in the world. It is an impact McKim metasediments. structure in rocks of the Superior Province to the The 800 and 810 ore bodies are the two North and the Southern Province to the South. major deposits in the Copper Cliff South mine, The Sudbury Igneous Complex is subdivided located at the opposite contacts of the quartz into Main Mass and offset dikes (radial and diorite dike with metapelite of McKim concentric): the Main Mass is composed of the Formation. In several places the two ore bodies Contact Sublayer, norite, quartz gabbro and are connected through the center of the dike or granophyre, from bottom to top. The offset there is another ore body parallel to the contact dikes, composed of quartz diorite, intruded along of quartz diorite and country rocks. The primary fracture zones in highly brecciated areas created magmatic minerals in the quartz diorite in by the meteorite impact (Hawley, 1962). The Copper Cliff South include plagioclase, quartz, Copper Cliff Offset, the host of 15 % of the amphibole and biotite. The quartz diorite is sulfide ore (Cochrane, 1984), is one of the radial weakly to strongly altered in the whole area, with offset dikes in the South Range of the Sudbury increasing degree of alteration toward the Structure.
    [Show full text]
  • A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China
    minerals Article A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China Jianping Liu and Shugen Zhang * Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China; [email protected] * Correspondence: [email protected]; Tel.: +86-731-888-30616 Received: 15 June 2017; Accepted: 26 July 2017; Published: 28 July 2017 Abstract: Zn-Cd-S series minerals not only comprise industrial resources for Zn and Cd, but are also significant mineralogical indicators for hydrothermal ore-forming processes. Due to its unique formation conditions and rare occurrence, our understanding of the formation of zincian greenockite in natural systems is limited. Zincian greenockite was discovered during mineralogical studies in the Saishitang Cu skarn deposit, Qinghai Province, Northwest China. This provided an ideal opportunity to assess the occurrence and formation of zincian greenockite in skarn-type deposits. Ore minerals were observed using reflected-light microscopy, and the zincian greenockite was further analyzed using electron-probe microanalysis (EPMA) and X-ray diffraction (XRD). The zincian greenockite occurs in the bornite–chalcopyrite ores and is composed of subhedral to anhedral grains approximately 50 × 150 µm2 to 200 × 300 µm2 in size, replaces the bornite, and is replaced by native silver. Two phases (I and II) were identified based on back-scattered electron images, X-ray element-distributions maps, and EPMA data. The textural relationship indicated that Phase I was replaced by Phase II. Phase I contained high Zn (14.6 to 21.7 mol % ZnS) and low Cd (72.4 to 82.2 mol % CdS), while Phase II contained low Zn (5.6 to 9.1 mol % ZnS) and high Cd (85.4 to 89.9 mol % CdS).
    [Show full text]
  • Preliminary Model of Porphyry Copper Deposits
    Preliminary Model of Porphyry Copper Deposits Open-File Report 2008–1321 U.S. Department of the Interior U.S. Geological Survey Preliminary Model of Porphyry Copper Deposits By Byron R. Berger, Robert A. Ayuso, Jeffrey C. Wynn, and Robert R. Seal Open-File Report 2008–1321 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Berger, B.R., Ayuso, R.A., Wynn, J.C., and Seal, R.R., 2008, Preliminary model of porphyry copper deposits: U.S. Geological Survey Open-File Report 2008–1321, 55 p. iii Contents Introduction.....................................................................................................................................................1 Regional Environment ...................................................................................................................................3
    [Show full text]
  • Paragenesis of Cobalt and Nickel at the Black Butte Copper Project, Meagher County, Montana
    PARAGENESIS OF COBALT AND NICKEL AT THE BLACK BUTTE COPPER PROJECT, MEAGHER COUNTY, MONTANA by Joshua White A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geosciences Geology Option Montana Tech of The University of Montana 2012 ii Abstract The Black Butte Copper Project (formerly known as the Sheep Creek deposit) is a sediment hosted, laterally extensive massive sulfide deposit hosted in the mid-Proterozoic Newland Formation in Central Montana. Formation of the deposit occurred during two stages of mineralization: Stage I occurred during deposition of sediment in the Helena Embayment, and Stage II occurred post-deposition. Stage I mineralization is characterized by a large quantity of porous pyrite hosting significant Co/Ni/As mineralization in the form of both ion substitution within the pyrite chemical lattice and small (< 1 μm) mineral inclusions of Ni-rich alloclasite. Stage II mineralization reworked the existing Co/Ni/As mineralization, removing the metals from the pyrite and reprecipitating them as distinct siegenite ((Co,Ni)3S4) and tennantite (Cu12As4S13) grains, usually adjacent to one another. Stage II introduced minor, if any, additional Co/Ni/As mineralization into the deposit. Although siegenite is abundant in Co-rich portions of the ore body and is readily identifiable in hand specimen and under the microscope, stoichiometric relationships based on drill-core assay data suggest that Co and Ni were originally introduced into the deposit in the form of alloclasite. Although many of the characteristics of SEDEX type deposits are present at Black Butte (e.g., low temperature of formation, laterally extensive massive sulfide horizons, interbedded black shales, abundant barite and local phosphate horizons, hosted within a continental rift) the lack of economic Pb and Zn mineralization in the central ore body and the abundance of Cu/Co/Ni is more typical of red-bed copper deposits.
    [Show full text]