Cascading Effects in Freshwater Microbial Food Webs by Predatory Cercozoa, Katablepharidacea and Ciliates Feeding on Aplastidic Bacterivorous Cryptophytes

Total Page:16

File Type:pdf, Size:1020Kb

Cascading Effects in Freshwater Microbial Food Webs by Predatory Cercozoa, Katablepharidacea and Ciliates Feeding on Aplastidic Bacterivorous Cryptophytes Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes Šimek, Karel ; Grujčić, Vesna ; Mukherjee, Indranil ; Kasalický, Vojtěch ; Nedoma, Jiří ; Posch, Thomas ; Mehrshad, Maliheh ; Salcher, Michaela M Abstract: Heterotrophic nanoflagellates (HNF) are considered as major planktonic bacterivores, however, larger HNF taxa can also be important predators of eukaryotes. To examine this trophic cascading, natu- ral protistan communities from a freshwater reservoir were released from grazing pressure by zooplankton via filtration through 10- and 5-µm filters, yielding microbial food webs of different complexity. Protis- tan growth was stimulated by amendments of five Limnohabitans strains, thus yielding five prey-specific treatments distinctly modulating protistan communities in 10- versus 5-µm fractions. HNF dynamics was tracked by applying five eukaryotic fluorescence in situ hybridization probes covering 55–90% oftotal flagellates. During the first experimental part, mainly small bacterivorous Cryptophyceae prevailed, with significantly higher abundances in 5-µm treatments. Larger predatory flagellates affiliating with Katable- pharidacea and one Cercozoan lineage (increasing to up to 28% of total HNF) proliferated towards the experimental endpoint, having obviously small phagocytized HNF in their food vacuoles. These predatory flagellates reached higher abundances in 10-µm treatments, where small ciliate predators and flagellate hunters also (Urotricha spp., Balanion planctonicum) dominated the ciliate assemblage. Overall, our study reports pronounced cascading effects from bacteria to bacterivorous HNF, predatory HNFand ciliates in highly treatment-specific fashions, defined by both prey-food characteristics and feeding modes of predominating protists. DOI: https://doi.org/10.1093/femsec/fiaa121 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-198381 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. Originally published at: Šimek, Karel; Grujčić, Vesna; Mukherjee, Indranil; Kasalický, Vojtěch; Nedoma, Jiří; Posch, Thomas; Mehrshad, Maliheh; Salcher, Michaela M (2020). Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiology Ecology, 96(10):fiaa121. DOI: https://doi.org/10.1093/femsec/fiaa121 2 FEMS Microbiology Ecology, 96, 2020, fiaa121 doi: 10.1093/femsec/fiaa121 Advance Access Publication Date: 18 June 2020 Research Article Downloaded from https://academic.oup.com/femsec/article/96/10/fiaa121/5859480 by University of Zurich user on 29 January 2021 January 29 user on Zurich of University by https://academic.oup.com/femsec/article/96/10/fiaa121/5859480 from Downloaded RESEARCH ARTICLE Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes Karel Simekˇ 1,2,*,§, Vesna Grujciˇ c´ 1,†, Indranil Mukherjee1, Vojtechˇ Kasalicky´ 1,#, Jirˇ´ı Nedoma1, Thomas Posch3, Maliheh Mehrshad1,‡ and Michaela M. Salcher1, 1Biology Centre CAS, Institute of Hydrobiology, Na Sadk´ ach´ 7, 370 05 Ceskˇ e´ Budejovice,ˇ Czech Republic, 2University of South Bohemia, Faculty of Science, Branisovskˇ a´ 31, 370 05 Ceskˇ e´ Budejovice,ˇ Czech Republic and 3Limnological Station, Department of Plant and Microbial Biology, University of Zurich, 8802 Kilchberg, Switzerland ∗Corresponding author: Biology Centre CAS, Institute of Hydrobiology, Na Sadk´ ach´ 7, CZ-37005 Ceskˇ e´ Budejovice,ˇ Czech Republic. Tel: +420 387775873; Fax: +420 385310248; E-mail: [email protected] One sentence summary: Presented are experimentally induced cascading effects from bacteria to bacterivorous flagellates, predatory flagellates and ciliates in different plankton size fractions, modulated by prey-food characteristics and feeding modes of predominating protists. Editor: Martin W. Hahn †Current address: Science for Life laboratory, School of engineering sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal institute of Technology, SE-17121, Stockholm, Sweden. ‡Current address: Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Norbyvagen¨ 18D, 752 36 Uppsala, Sweden. §Karel Simek,ˇ http://orcid.org/0000-0002-7058-9063 #Vojtechˇ Kasalicky,´ http://orcid.org/0000-0002-9132-8321 Michaela M. Salcher, https://orcid.org/0000-0003-1063-6523 ABSTRACT Heterotrophic nanoflagellates (HNF) are considered as major planktonic bacterivores, however, larger HNF taxa canalsobe important predators of eukaryotes. To examine this trophic cascading, natural protistan communities from a freshwater reservoir were released from grazing pressure by zooplankton via filtration through 10- and 5-µm filters, yielding microbial food webs of different complexity. Protistan growth was stimulated by amendments of five Limnohabitans strains, thus yielding five prey-specific treatments distinctly modulating protistan communities in 10- versus 5-µm fractions. HNF dynamics was tracked by applying five eukaryotic fluorescence in situ hybridization probes covering 55–90% of total flagellates. During the first experimental part, mainly small bacterivorous Cryptophyceae prevailed, with significantly higher abundances in 5-µm treatments. Larger predatory flagellates affiliating with Katablepharidacea and one Cercozoan lineage (increasing to up to 28% of total HNF) proliferated towards the experimental endpoint, having obviously small Received: 27 April 2020; Accepted: 17 June 2020 C The Author(s) 2020. Published by Oxford University Press on behalf of FEMS. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] 1 2 FEMS Microbiology Ecology, 2020, Vol. 96, No. 10 phagocytized HNF in their food vacuoles. These predatory flagellates reached higher abundances in 10-µm treatments, where small ciliate predators and flagellate hunters alsoUrotricha ( spp., Balanion planctonicum) dominated the ciliate assemblage. Overall, our study reports pronounced cascading effects from bacteria to bacterivorous HNF, predatory HNF and ciliates in highly treatment-specific fashions, defined by both prey-food characteristics and feeding modesof predominating protists. Keywords: freshwater microbial food webs; bacterivorous and predatory flagellates; Cryptophyceae; Katablepharidacea; Cercozoa; ciliates Downloaded from https://academic.oup.com/femsec/article/96/10/fiaa121/5859480 by University of Zurich user on 29 January 2021 January 29 user on Zurich of University by https://academic.oup.com/femsec/article/96/10/fiaa121/5859480 from Downloaded INTRODUCTION technique provides even higher resolution by allowing simul- taneous phylogenetic identification of both predator and prey Heterotrophic nanoflagellates (HNF) represent an extremely (Grujciˇ c´ et al. 2018). These cumbersome single-cell approaches diverse polyphyletic group of mostly uncultured representatives have recently revealed novel findings on the importance of var- belonging to a heterogeneous functional guild. The small HNF ious flagellate taxa in marine and freshwater pelagic food webs. are considered as key bacterivores in pelagic systems (Berninger, For instance, tiny flagellated stramenopiles from the MAST-1 Finlay and Kuuppo-Leinikki 1991; Pernthaler 2005), whereas the and MAST-4 lineages have been identified as important bac- larger ones are omnivorous, or likely predators of small bacteriv- terivores in marine systems (Massana et al. 2009). Likewise, orous flagellates (Arndt et al. 2000 and references therein, Piwosz small aplastidic representatives of cryptophytes (mostly known and Pernthaler 2010). However, the term ‘omnivorous protists’ as chloroplast-bearing autotrophs) and therein the Cry1 lineage is still not as clearly defined. This topic gets even more com- can be the core bacterivores with high cell-specific bacterial plex in view of current discussions about adequate terminol- uptake rates in freshwater pelagic environments (Grujciˇ c´ et al. ogy describing feeding modes of planktonic protists in general 2018, Mehrshad and coauthors, unpublished data). (Kiørboe´ 2011; Weisse 2017). A strict categorization of protistan In addition, specific experimental setups were designed species as ‘algivores’ and ‘predators’ may be valid only for a with the aim of minimizing the manipulation-induced distur- few distinct taxa, however, this terminology probably does not bances of natural microbial communities that yield considerable reflect the breadth of ingested food particles for the majority of enrichments of protistan bacterivores (Simekˇ et al. 2001, 2013). protistan grazers (Weisse et al. 2016). In our study, we use the For instance, simplified microbial food webs, that excluded zoo- term omnivory as a synonym for a flagellate feeding mode where plankton grazing pressure on protists
Recommended publications
  • Rhizaria, Cercozoa)
    Protist, Vol. 166, 363–373, July 2015 http://www.elsevier.de/protis Published online date 28 May 2015 ORIGINAL PAPER Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa) a,1 a a b Yasuhide Nakamura , Ichiro Imai , Atsushi Yamaguchi , Akihiro Tuji , c d Fabrice Not , and Noritoshi Suzuki a Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041–8611, Japan b Department of Botany, National Museum of Nature and Science, Tsukuba 305–0005, Japan c CNRS, UMR 7144 & Université Pierre et Marie Curie, Station Biologique de Roscoff, Equipe EPPO - Evolution du Plancton et PaléoOcéans, Place Georges Teissier, 29682 Roscoff, France d Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai 980–8578, Japan Submitted January 1, 2015; Accepted May 19, 2015 Monitoring Editor: David Moreira Phaeodarians are a group of widely distributed marine cercozoans. These plankton organisms can exhibit a large biomass in the environment and are supposed to play an important role in marine ecosystems and in material cycles in the ocean. Accurate knowledge of phaeodarian classification is thus necessary to better understand marine biology, however, phylogenetic information on Phaeodaria is limited. The present study analyzed 18S rDNA sequences encompassing all existing phaeodarian orders, to clarify their phylogenetic relationships and improve their taxonomic classification. The mono- phyly of Phaeodaria was confirmed and strongly supported by phylogenetic analysis with a larger data set than in previous studies. The phaeodarian clade contained 11 subclades which generally did not correspond to the families and orders of the current classification system. Two families (Challengeri- idae and Aulosphaeridae) and two orders (Phaeogromida and Phaeocalpida) are possibly polyphyletic or paraphyletic, and consequently the classification needs to be revised at both the family and order levels by integrative taxonomy approaches.
    [Show full text]
  • Phylogenomics Supports the Monophyly of the Cercozoa T ⁎ Nicholas A.T
    Molecular Phylogenetics and Evolution 130 (2019) 416–423 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenomics supports the monophyly of the Cercozoa T ⁎ Nicholas A.T. Irwina, , Denis V. Tikhonenkova,b, Elisabeth Hehenbergera,1, Alexander P. Mylnikovb, Fabien Burkia,2, Patrick J. Keelinga a Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada b Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia ARTICLE INFO ABSTRACT Keywords: The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major Cercozoa component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa Rhizaria remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, Phylogeny including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly Phylogenomics of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from Single-cell transcriptomics newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12′ group, and phyloge- nomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole.
    [Show full text]
  • Ebriid Phylogeny and the Expansion of the Cercozoa
    ARTICLE IN PRESS Protist, Vol. 157, 279—290, May 2006 http://www.elsevier.de/protis Published online date 26 May 2006 ORIGINAL PAPER Ebriid Phylogeny and the Expansion of the Cercozoa Mona Hoppenrath1, and Brian S. Leander Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4 Submitted November 30, 2005; Accepted March 4, 2006 Monitoring Editor: Herve´ Philippe Ebria tripartita is a phagotrophic flagellate present in marine coastal plankton communities worldwide. This is one of two (possibly four) described extant species in the Ebridea, an enigmatic group of eukaryotes with an unclear phylogenetic position. Ebriids have never been cultured, are usually encountered in low abundance and have a peculiar combination of ultrastructural characters including a large nucleus with permanently condensed chromosomes and an internal skeleton composed of siliceous rods. Consequently, the taxonomic history of the group has been tumultuous and has included a variety of affiliations, such as silicoflagellates, dinoflagellates, ‘radiolarians’ and ‘neomonads’. Today, the Ebridea is treated as a eukaryotic taxon incertae sedis because no morphological or molecular features have been recognized that definitively relate ebriids with any other eukaryotic lineage. We conducted phylogenetic analyses of small subunit rDNA sequences from two multi-specimen isolations of Ebria tripartita. The closest relatives to the sequences from Ebria tripartita are environmental sequences from a submarine caldera floor. This newly recognized Ebria clade was most closely related to sequences from described species of Cryothecomonas and Protaspis. These molecular phylogenetic relationships were consistent with current ultrastructural data from all three genera, leading to a robust placement of ebriids within the Cercozoa.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Molecular Phylogeny of Euglyphid Testate Amoebae (Cercozoa: Euglyphida)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ARTICLE IN PRESS provided by Infoscience - École polytechnique fédérale de Lausanne Molecular Phylogenetics and Evolution xxx (2010) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent Thierry J. Heger a,b,c,d,e,*, Edward A.D. Mitchell a,b,c, Milcho Todorov f, Vassil Golemansky f, Enrique Lara c, Brian S. Leander e, Jan Pawlowski d a Ecosystem Boundaries Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-1015 Lausanne, Switzerland b Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland c Institute of Biology, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland d Department of Zoology and Animal Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland e Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 f Institute of Zoology, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria article info abstract Article history: Marine and freshwater ecosystems are fundamentally different regarding many biotic and abiotic factors. Received 24 June 2009 The physiological adaptations required for an organism to pass the salinity barrier are considerable. Many Revised 22 November 2009 eukaryotic lineages are restricted to either freshwater or marine environments. Molecular phylogenetic Accepted 25 November 2009 analyses generally demonstrate that freshwater species and marine species segregate into different Available online xxxx sub-clades, indicating that transitions between these two environments occur only rarely in the course of evolution.
    [Show full text]
  • Foraminifera and Cercozoa Share a Common Origin According to RNA Polymerase II Phylogenies
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 1735–1739 DOI 10.1099/ijs.0.02597-0 ISEP XIV Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies David Longet,1 John M. Archibald,2 Patrick J. Keeling2 and Jan Pawlowski1 Correspondence 1Dept of zoology and animal biology, University of Geneva, Sciences III, 30 Quai Ernest Jan Pawlowski Ansermet, CH 1211 Gene`ve 4, Switzerland [email protected] 2Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, #3529-6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4 Phylogenetic analysis of small and large subunits of rDNA genes suggested that Foraminifera originated early in the evolution of eukaryotes, preceding the origin of other rhizopodial protists. This view was recently challenged by the analysis of actin and ubiquitin protein sequences, which revealed a close relationship between Foraminifera and Cercozoa, an assemblage of various filose amoebae and amoeboflagellates that branch in the so-called crown of the SSU rDNA tree of eukaryotes. To further test this hypothesis, we sequenced a fragment of the largest subunit of the RNA polymerase II (RPB1) from five foraminiferans, two cercozoans and the testate filosean Gromia oviformis. Analysis of our data confirms a close relationship between Foraminifera and Cercozoa and points to Gromia as the closest relative of Foraminifera. INTRODUCTION produces an artificial grouping of Foraminifera with early protist lineages. The long-branch attraction phenomenon Foraminifera are common marine protists characterized by was suggested to be responsible for the position of granular and highly anastomosed pseudopodia (granulo- Foraminifera and some other putatively ancient groups of reticulopodia) and, typically, an organic, agglutinated or protists in rDNA trees (Philippe & Adoutte, 1998).
    [Show full text]
  • Phylogenomic Analyses Support the Monophyly of Excavata and Resolve Relationships Among Eukaryotic ‘‘Supergroups’’
    Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘‘supergroups’’ Vladimir Hampla,b,c, Laura Huga, Jessica W. Leigha, Joel B. Dacksd,e, B. Franz Langf, Alastair G. B. Simpsonb, and Andrew J. Rogera,1 aDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5; bDepartment of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1; cDepartment of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; dDepartment of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; eDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and fDepartement de Biochimie, Universite´de Montre´al, Montre´al, QC, Canada H3T 1J4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 22, 2009 (received for review August 12, 2008) Nearly all of eukaryotic diversity has been classified into 6 strong support for an incorrect phylogeny (16, 19, 24). Some recent suprakingdom-level groups (supergroups) based on molecular and analyses employ objective data filtering approaches that isolate and morphological/cell-biological evidence; these are Opisthokonta, remove the sites or taxa that contribute most to these systematic Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Exca- errors (19, 24). vata. However, molecular phylogeny has not provided clear evi- The prevailing model of eukaryotic phylogeny posits 6 major dence that either Chromalveolata or Excavata is monophyletic, nor supergroups (25–28): Opisthokonta, Amoebozoa, Archaeplastida, has it resolved the relationships among the supergroups. To Rhizaria, Chromalveolata, and Excavata. With some caveats, solid establish the affinities of Excavata, which contains parasites of molecular phylogenetic evidence supports the monophyly of each of global importance and organisms regarded previously as primitive Rhizaria, Archaeplastida, Opisthokonta, and Amoebozoa (16, 18, eukaryotes, we conducted a phylogenomic analysis of a dataset of 29–34).
    [Show full text]
  • Chemosynthetic and Photosynthetic Bacteria Contribute Differentially to Primary Production Across a Steep Desert Aridity Gradient
    The ISME Journal https://doi.org/10.1038/s41396-021-01001-0 ARTICLE Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient 1,2 3,4 5 6 2 Sean K. Bay ● David W. Waite ● Xiyang Dong ● Osnat Gillor ● Steven L. Chown ● 3 1,2 Philip Hugenholtz ● Chris Greening Received: 23 November 2020 / Revised: 16 April 2021 / Accepted: 28 April 2021 © The Author(s) 2021. This article is published with open access Abstract Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia 1234567890();,: 1234567890();,: were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, withthecapacitytoalsouseatmosphericH2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils.
    [Show full text]
  • Inferring Ancestry
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176 Inferring Ancestry Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life DING HE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9031-7 UPPSALA urn:nbn:se:uu:diva-231670 2014 Dissertation presented at Uppsala University to be publicly examined in Fries salen, Evolutionsbiologiskt centrum, Norbyvägen 18, 752 36, Uppsala, Friday, 24 October 2014 at 10:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Andrew Roger (Dalhousie University). Abstract He, D. 2014. Inferring Ancestry. Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9031-7. There are ~12 supergroups of complex-celled organisms (eukaryotes), but relationships among them (including the root) remain elusive. For Paper I, I developed a dataset of 37 eukaryotic proteins of bacterial origin (euBac), representing the conservative protein core of the proto- mitochondrion. This gives a relatively short distance between ingroup (eukaryotes) and outgroup (mitochondrial progenitor), which is important for accurate rooting. The resulting phylogeny reconstructs three eukaryote megagroups and places one, Discoba (Excavata), as sister group to the other two (neozoa). This rejects the reigning “Unikont-Bikont” root and highlights the evolutionary importance of Excavata. For Paper II, I developed a 150-gene dataset to test relationships in supergroup SAR (Stramenopila, Alveolata, Rhizaria). Analyses of all 150-genes give different trees with different methods, but also reveal artifactual signal due to extremely long rhizarian branches and illegitimate sequences due to horizontal gene transfer (HGT) or contamination.
    [Show full text]
  • The Phagotrophic Origin of Eukaryotes and Phylogenetic Classification Of
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 297–354 DOI: 10.1099/ijs.0.02058-0 The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa Department of Zoology, T. Cavalier-Smith University of Oxford, South Parks Road, Oxford OX1 3PS, UK Tel: j44 1865 281065. Fax: j44 1865 281310. e-mail: tom.cavalier-smith!zoo.ox.ac.uk Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an α-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an α-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton.
    [Show full text]
  • Rhizaria: Cercozoa) in a Temperate Grassland
    bioRxiv preprint doi: https://doi.org/10.1101/531970; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Environmental selection and spatiotemporal structure of a major group of 2 soil protists (Rhizaria: Cercozoa) in a temperate grassland 3 Running title (50 char): Community structure of soil protists (Cercozoa) 4 Anna Maria Fiore-Donno1,2*, Tim Richter-Heitmann3, Florine Degrune4,5, Kenneth 5 Dumack1,2, Kathleen M. Regan6, Sven Mahran7, Runa S. Boeddinghaus7, Matthias C. 6 Rillig4,5, Michael W. Friedrich3, Ellen Kandeler7, Michael Bonkowski1,2 7 1Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany 8 2Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany 9 3Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, 10 Bremen, Germany 11 4Insitute of Biology, Plant Ecology, Freie Universität Berlin, Berlin, Germany 12 5Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany 13 6Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA USA 14 7Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of 15 Hohenheim, Stuttgart-Hohenheim, Germany. 16 Correspondence: Anna Maria Fiore-Donno, [email protected], Biozentrum 17 Koeln, Zuelpicher Str. 47b, 50674 Cologne, Germany. Phone +49 221 470 2927 18 Keywords: biogeography, functional traits, soil ecology, protozoa, microbial assembly, 19 environmental selection, dispersal limitation 20 Abstract 21 Soil protists are increasingly appreciated as essential components of soil foodwebs; however, 22 there is a dearth of information on the factors structuring their communities.
    [Show full text]
  • Biological Composition and Microbial Dynamics of Sinking Particulate Organic Matter at Abyssal Depths in the Oligotrophic Open Ocean
    Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean Dominique Boeufa,1, Bethanie R. Edwardsa,1,2, John M. Eppleya,1, Sarah K. Hub,3, Kirsten E. Poffa, Anna E. Romanoa, David A. Caronb, David M. Karla, and Edward F. DeLonga,4 aDaniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI 96822; and bDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089 Contributed by Edward F. DeLong, April 22, 2019 (sent for review February 21, 2019; reviewed by Eric E. Allen and Peter R. Girguis) Sinking particles are a critical conduit for the export of organic sample both suspended as well as slowly sinking POM. Because material from surface waters to the deep ocean. Despite their filtration methods can be biased by the volume of water filtered importance in oceanic carbon cycling and export, little is known (21), also collect suspended particles, and may under-sample about the biotic composition, origins, and variability of sinking larger, more rapidly sinking particles, it remains unclear how well particles reaching abyssal depths. Here, we analyzed particle- they represent microbial communities on sinking POM in the associated nucleic acids captured and preserved in sediment traps deep sea. Sediment-trap sampling approaches have the potential at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9- to overcome some of these difficulties because they selectively month time-series, Bacteria dominated both the rRNA-gene and capture sinking particles. rRNA pools, followed by eukaryotes (protists and animals) and trace The Hawaii Ocean Time-series Station ALOHA is an open- amounts of Archaea.
    [Show full text]