NASA's in Space Manufacturing Initiative and Additive

Total Page:16

File Type:pdf, Size:1020Kb

NASA's in Space Manufacturing Initiative and Additive 1 National Aeronautics and Space Administration NASA’s In Space Manufacturing Initiative and Additive Manufacturing Development for Rocket Engine Space Flight Hardware Presented to: Aeronautics and Space Engineering Board National Academy of Sciences, Engineering and Medicine October 13, 2016 shall Beckman Center r Irvine, California ma R.G. Clinton, Jr. www.nasa.gov Acting Manager, Science and Technology Office NASA, Marshall Space Flight Center1 Contributors • Kristin Morgan: NASA MSFC Additive Manufacturing Lead • Dr. Tracie Prater: NASA MSFC In Space Manufacturing Material Characterization Lead • Elizabeth Robertson: NASA MSFC Additive Manufactured Engine Technology Development • Mike Snyder: Made In Space Chief Designer • Niki Werkheiser: NASA MSFC In Space Manufacturing Project Manager • Andrew Owens: NASA Tech Fellow, MIT PhD Canidate 2 Agenda • Discussion Topics – How is Additive Manufacturing Used in Your Field/Application Area Today? – How Do You Expect Additive Manufacturing to be Used in ISM Portfolio 5 Years? – Why Have You Chosen to Move into Additive Manufacturing, and What Technical Capabilities Are You Focused On? – What Do You Believe the Major Challenges Are to More Effective Use of Additive Manufacturing? – What Corollary or Overlapping Technologies have been Important to the Effective Utility of Additive Manufacturing in your Application Space? • In Space Manufacturing Initiative (ISM) – In Space Manufacturing Path to Exploration – Evolvable Mars Campaign Assessment – ISM Portfolio – ISM Program Timeline • Additive Manufacturing Development for Rocket Engine Space Flight Hardware – Additive Manufactured Engine Technology Development (AMETD) – Proposed Engineering and Quality Standard for Additively Manufactured Spaceflight Hardware – Challenges to Effective Use of Additive Manufacturing • Summary 3 Additive Manufacturing at Marshall Space Flight Center In Space Manufacturing Initiative 4 In-space Manufacturing Path to Exploration GROUND- EARTH RELIANT PROVING GROUND EARTH INDEPENDENT BASED ISS Cis-lunar Mars Earth-Based Platform • Certification & Inspection Process • Design Properties Database • Additive Manufacturing Automation ISS Test-bed Platform • • Ground-based 3D Print Demo • Additive Planetary Surfaces Platform Technology • Multi-materials Fab Lab Maturation & Manufacturing Facility • Demonstration In-space Recycling (metals, polymers, automation, • • AM for Exploration In-space Metals printable electronics) • Support Systems (e.g. Printable Electronics • • Food/Medical Grade Polymer ECLSS) Design, Multi-material Fab Lab • Printing & Recycling Development & Test In-line NDE • External • Additive Construction • Additive Construction Space • Regolith (Feedstock) Manufacturing Technologies Launch • On-demand Parts System • Regolith Materials – Feedstock Catalogue Asteroids • Exploration Systems • AM Exploration Systems Demonstration and Operational Validation Text Color Legend Foundational AM Capabilities AM for Exploration Systems Surface / ISRU Systems 5 ISM Provides Solutions for Exploration Logistics Reduction in Spares Mass Requirements ISM significantly reduces the mass that For Items Manufactured in Space needs to be carried to cover maintenance demands by enabling on-demand manufacturing from common raw materials -78.3% ISM enables the use of recycled materials and in-situ resources, allowing even more dramatic reductions in mass requirements -97.7% ISM enables flexibility, giving systems a broad capability to adapt to unanticipated circumstances. This mitigates risks that are Decreasing Mass not covered by current approaches to maintainability. In-Space Manufacturing is a strong Without With ISM + solution to maintenance logistics ISM ISM Recycling challenges that can - Reduce mass This case examined parts associated with fluid flow (i.e. - Mitigate risk fans, valves, ducts, piping, etc.). Approx. 1/3 of total - Enable adaptable systems components were assumed to be manufactured in-space. 6 Owens and de Weck 2016 Evolvable Mars Campaign Conclusions and Recommendations EMC Conclusions • ISM is a necessary paradigm shift in space operations, not a ‘bonus’ • Applications should look at recreating function, not form • ISM is a capability, not a subsystem, and has broad applications EMC Key Recommendations • ISM team needs to be working with exploration system designers now to identify high-value application areas and influence design • Define driving functional and interface requirements • Provide expertise to designers to translate traditional design to ISM design • Perform testing and demonstration • Monitor and leverage rapidly advancing commercial advanced manufacturing technologies • Adapt commercial technology for spaceflight applications to take advantage of cost/schedule savings • Collaborate with industry, academia, other government • ISS is a critical testbed for driving out these capabilities • Develop technology and process experience via on-orbit testing • Identify demo/test opportunities for existing ISM infrastructure (3DP, AMF) • Develop and test FabLab in preparation for springboard to Cis-lunar ‘Proving Ground’ 7 In-space Manufacturing Portfolio EXPLORATION MULTI- IN-SPACE DESIGN DATABASE IN-SPACE IN-SPACE MATERIAL ’FAB PRINTED V&V & TESTING POLYMERS RECYCLING LAB’ RACK ELECTRONICS (In-transit & Surface PROCESS Systems • Develop • • • Refabricator Develop Multi- MSFC • Develop & design-level ISS Demo with material Conductive & Baseline on- database for • ISS On- Tethers Fabrication Dielectric Inks orbit, in- applications demand Mfctr. Unlimited, Inc. Laboratory patented process • Materials dev. • w/polymers. (TUI) for on- Rack as Designed & certification & characterize • 3D Print Tech orbit 3D ‘springboard’ Tested RFID process based for feedstocks Demo Printing & for Exploration Antenna, Tags upon the (in-transit & • Additive Recycling. missions and ultra- DRAFT surface) in • Manufacturing • Multiple In-space capacitors Engineering MAPTIS DB. • Facility with SBIRs Metals ISS 2017 ISM SBIR and Quality • Design & test Made in underway on Demo subtopic Standards for high-value • • Space, Inc. common-use nScrypt Multi- Collaboration Additively components • Material materials & material w/Ames on Manufactured for ISS & Characterizati medical/food machine at plasma jet Space Flight Exploration on & Testing grade recycler MSFC for R&D technology. Hardware (ground & ISS)8 FY14 FY15 FY16 FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 PH.2 LAUNCH PH. 1 3D ISS Print Tech Demo ISS OPS ISS OPS PH.1 BUILD RESULTS & CERT ISS Additive LAUNCH ISS ULTEM Manufacturing Facility PARTS DEVELOP & ISS OGS BUILD (AMF) ADAPTER ISS COMMERCIAL & NASA UTILIZATION MFCTR ISS DEMO ISS DEMO PH. PDR CDR LAUNCH ISS DEMO OPS PH. 1 SBIR 2 SBIR In-Space Recycling ISS DEMO PH. 2E/3 SBIR DESIGN, BUILD & GROUND DEMO ISS FLIGHT CERT ISS Multi-Material ‘Fab Lab’ YET2 TECH RFI SEARCH FAB LAB TECHNOLOGY DEMONSTRATION FAB LAB PH. B FAB LAB BAA PH. C Rack (Metallics, Polymers, PH. A FAB LAB etc.) FAB LAB BAA BAA BAA DEV In-Space Metals Development INK DEVELOPMENT ISS RFID PH. 1 SBIR PH. 2 SBIR Printable Electronics Design & Test In-Space Verification and UTILIZATION ISS ISM V&V Validation (In-process CATALOG DEVELOPMENT DEVELOPMENT ISM V&V NDE) BASELINE (ISS) EXPLORATION SYSTEMS V&V TESTING Exploration Systems ISM EMC IDENTIFY & GROUND TEST EXPLORATION FAB LAB MFCTR OF EXPLORATION PARTS Design Database & QUANTITATIVE COMPONENTS BENEFIT Component Testing ANALYSIS ISM must influence Exploration design now & develop the corresponding technologies. At the current resource levels, ISM will not achieve needed capability within the required mission timeframe. Additive Manufacturing at Marshall Space Flight Center Additive Manufacturing Development for Rocket Engine Space Flight Hardware 10 Strategic Vision for Future AM Engine Systems Building Experience Defining the Development “Smart Buyer” to enable Philosophy of the Future Commercial Partners • Dramatic Reduction in Design Development, Test and Evaluation (DDT&E) Cycles • Transforming Manual to Automated Manufacturing • Integrating Design with Manufacturing Bridging the gap between the present and future projects that Building Foundational are coming Industrial Base Enabling & Developing Revolutionary Technology Transferring “Open Rights” SLM Material Property Data & Technology to U.S. Industry 11 Game-Changing Aspects State of the Art Additive Manufactured Engine Technology Development • DDT&E Cost 1/10th Dev Cost & • AMETD Cost Resources – $1-4 Billion – $50 Million (projected) – 500 FTE – 50 FTE • DDT&E Time 1/2 Dev Lead Time • AMETD DDT&E Time – 7-10 years – 2-4 years • Hardware Lead Times 1/6th Production Time • Hardware Lead Times – 3-6 Years – 6-12 Months • Engine Cost 1/10th Reoccurring Cost • AMETD Engine Cost – $20 - $50 Million – $1-5 Million • Applicability • Applicability – Often proprietary – Provide relevant data to – Design for multiple customers (SLS, particular mission Commercial partners, other by a particular government agencies) contractor – Flexible testbed configuration can accommodate other’s hardware / design concepts 12 Reduction in Parts Count for Major Hardware AM in the Human Exploration and Operations Portfolio Exploration Systems Development Commercial Crew Program (CCP) ORION and SLS DRAGON V2 NASA Exploration Programs and Program Partners have embraced AM for its affordability, shorter manufacturing times, and flexible design solutions. 13 AM parts are baselined for spaceflight hardware. 40 AM parts are in tradespace. 15 AM Qualification
Recommended publications
  • The Space Elevator NIAC Phase II Final Report March 1, 2003
    The Space Elevator NIAC Phase II Final Report March 1, 2003 Bradley C. Edwards, Ph.D. Eureka Scientific [email protected] The Space Elevator NIAC Phase II Final Report Executive Summary This document in combination with the book The Space Elevator (Edwards and Westling, 2003) summarizes the work done under a NASA Institute for Advanced Concepts Phase II grant to develop the space elevator. The effort was led by Bradley C. Edwards, Ph.D. and involved more than 20 institutions and 50 participants at some level. The objective of this program was to produce an initial design for a space elevator using current or near-term technology and evaluate the effort yet required prior to construction of the first space elevator. Prior to our effort little quantitative analysis had been completed on the space elevator concept. Our effort examined all aspects of the design, construction, deployment and operation of a space elevator. The studies were quantitative and detailed, highlighting problems and establishing solutions throughout. It was found that the space elevator could be constructed using existing technology with the exception of the high-strength material required. Our study has also found that the high-strength material required is currently under development and expected to be available in 2 years. Accepted estimates were that the space elevator could not be built for at least 300 years. Colleagues have stated that based on our effort an elevator could be operational in 30 to 50 years. Our estimate is that the space elevator could be operational in 15 years for $10B. In any case, our effort has enabled researchers and engineers to debate the possibility of a space elevator operating in 15 to 50 years rather than 300.
    [Show full text]
  • NASA's in Space Manufacturing Initiative and Additive Manufacturing Development for Rocket Engine Space Flight Hardware
    1 National Aeronautics and Space Administration NASA’s In Space Manufacturing Initiative and Additive Manufacturing Development for Rocket Engine Space Flight Hardware Presented to: Aeronautics and Space Engineering Board National Academy of Sciences, Engineering and Medicine October 13, 2016 shall Beckman Center r Irvine, California ma R.G. Clinton, Jr. www.nasa.gov Acting Manager, Science and Technology Office NASA, Marshall Space Flight Center1 Contributors • Kristin Morgan: NASA MSFC Additive Manufacturing Lead • Dr. Tracie Prater: NASA MSFC In Space Manufacturing Material Characterization Lead • Elizabeth Robertson: NASA MSFC Additive Manufactured Engine Technology Development • Mike Snyder: Made In Space Chief Designer • Niki Werkheiser: NASA MSFC In Space Manufacturing Project Manager • Andrew Owens: NASA Tech Fellow, MIT PhD Canidate 2 Agenda • Discussion Topics – How is Additive Manufacturing Used in Your Field/Application Area Today? – How Do You Expect Additive Manufacturing to be Used in ISM Portfolio 5 Years? – Why Have You Chosen to Move into Additive Manufacturing, and What Technical Capabilities Are You Focused On? – What Do You Believe the Major Challenges Are to More Effective Use of Additive Manufacturing? – What Corollary or Overlapping Technologies have been Important to the Effective Utility of Additive Manufacturing in your Application Space? • In Space Manufacturing Initiative (ISM) – In Space Manufacturing Path to Exploration – Evolvable Mars Campaign Assessment – ISM Portfolio – ISM Program Timeline • Additive
    [Show full text]
  • 2020 International Space Station U.S. National Laboratory Additive Manufacturing in Space Workshop ______Virtual Event Discussion Summary September 10, 2020
    2020 International Space Station U.S. National Laboratory Additive Manufacturing in Space Workshop __________________________________________________________ Virtual Event Discussion Summary September 10, 2020 The 2020 International Space Station (ISS) U.S. National Laboratory Additive Manufacturing in Space Workshop held on July 28, 2020 was hosted by the Center for the Advancement of Science in Space (CASIS), manager of the ISS National Lab. 2020 Additive Manufacturing in Space Workshop Summary Contents I. EXECUTIVE SUMMARY ........................................................................................................................... 3 II. INTRODUCTION ...................................................................................................................................... 4 Workshop Objectives and Plan .................................................................................................................. 4 III. WORKSHOP DETAILS .............................................................................................................................. 5 Agenda ....................................................................................................................................................... 5 Breakout Sessions ...................................................................................................................................... 5 IV. MAIN SESSION PRESENTATIONS ...........................................................................................................
    [Show full text]
  • Advancements in Rocket Technology
    Advancements in Rocket Technology Prepared by Marcelo Fernando Condori Mendoza Credits: NASA https://www.nasa.gov/exploration/systems/sls/overview.html 1. History of Rocketry Ancient Rockets Rockets for Warfare Rockets as Inventions Early - Mid 20th Century Rockets Space Race Rockets Future Rockets Space Launch System (SLS) Overview NASA’s Space Launch System, or SLS, is an advanced launch vehicle that provides the foundation for human exploration beyond Earth’s orbit. Credits: NASA https://www.nasa.gov/sites/default/files/atoms/files/00 80_sls_fact_sheet_10162019a_final_508.pdf The Power to Explore Beyond Earth’s Orbit To fill America’s future needs for deep space missions, SLS will evolve into increasingly more powerful configurations. The first SLS vehicle, called Block 1, was able to send more than 26 metric tons (t) or 57,000 pounds (lbs.) to orbits beyond the Moon. https://www.nasa.gov/exploration/systems/sls/overview.html Block 1 - Initial SLS Configuration Block 1 - Initial SLS Configuration Credits: NASA What is SpaceX? QUESTION SpaceX headquarters in December Spaceflight Industries will carry and 2017; plumes from a flight of a launch a cluster of Kleos satellites on Falcon 9 rocket are visible overhead the SpaceX Falcon 9 scheduled for launch mid 2021. Space Exploration Technologies Corp., trading as SpaceX, is an American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California, which was founded in 2002 by Elon Mask. An Airbus A321 on final assembly line 3 in the Airbus plant at Hamburg Finkenwerder Airport Main important events The goal was reducing space transportation costs to enable the colonization of Mars.
    [Show full text]
  • The Space Sector in 2014 and Beyond
    The Space Economy at a Glance 2014 © OECD 2014 Chapter 1 The space sector in 2014 and beyond Chapter 1 reviews major trends in the space sector. It first provides a review of the “space economy” in 2014. It then focuses on an original analysis of global value chains in the space sector, including a spotlight on fifty years of European space co-operation. The chapter also looks at new dynamics in the sector, which may impact incumbents and new entrants, with a focus on innovation in industrial processes and the development of small satellites. 15 1. THE SPACE SECTOR IN 2014 AND BEYOND Defining the “space economy” in 2014 Straddling the defence and aerospace industries, the space sector has for decades been a relatively discrete sector, developed to serve strategic objectives in many OECD and non-OECD economies, with security applications, science and space exploration. The space sector, like many other high-tech sensitive domains, is now attracting much more attention around the world, as governments and private investors seek new sources of economic growth and innovation. The “space economy” has become an intriguing domain to examine, bringing interesting innovation capacities as well as new commercial opportunities. Over the past decade, the number of public and private actors involved in space activities worldwide has increased, spurring even further the development of the nascent space economy. Despite strong headwinds in many related sectors (e.g. defence), the space sector overall has not been significantly affected by the world economic crisis. It remains a strategic sector for many countries, relatively sheltered because of national imperatives (e.g.
    [Show full text]
  • Space Resources : Social Concerns / Editors, Mary Fae Mckay, David S
    Frontispiece Advanced Lunar Base In this panorama of an advanced lunar base, the main habitation modules in the background to the right are shown being covered by lunar soil for radiation protection. The modules on the far right are reactors in which lunar soil is being processed to provide oxygen. Each reactor is heated by a solar mirror. The vehicle near them is collecting liquid oxygen from the reactor complex and will transport it to the launch pad in the background, where a tanker is just lifting off. The mining pits are shown just behind the foreground figure on the left. The geologists in the foreground are looking for richer ores to mine. Artist: Dennis Davidson NASA SP-509, vol. 4 Space Resources Social Concerns Editors Mary Fae McKay, David S. McKay, and Michael B. Duke Lyndon B. Johnson Space Center Houston, Texas 1992 National Aeronautics and Space Administration Scientific and Technical Information Program Washington, DC 1992 For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-038062-6 Technical papers derived from a NASA-ASEE summer study held at the California Space Institute in 1984. Library of Congress Cataloging-in-Publication Data Space resources : social concerns / editors, Mary Fae McKay, David S. McKay, and Michael B. Duke. xii, 302 p. : ill. ; 28 cm.—(NASA SP ; 509 : vol. 4) 1. Outer space—Exploration—United States. 2. Natural resources. 3. Space industrialization—United States. I. McKay, Mary Fae. II. McKay, David S. III. Duke, Michael B. IV. United States.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods Permalink https://escholarship.org/uc/item/7n51c078 Author Morrow, David Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Aerospace Engineering by David Morrow 2020 c Copyright by David Morrow 2020 ABSTRACT OF THE THESIS Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods by David Morrow Master of Science in Aerospace Engineering University of California, Los Angeles, 2020 Professor Raymond M. Spearrin, Chair Additive manufacturing (AM) has matured significantly over the past decade and become a highly attractive tool for reducing manufacturing complexity and removing traditional de- sign constraints. This is particularly desirable for rocket combustion devices which often feature hundreds of individual parts with precise tolerances. The degree to which AM can be used to improve combustion device performance, however, has been less rigorously ex- plored. In this work, hydraulic performance impacts associated with and enabled by AM are assessed for a liquid bi-propellant swirl coaxial injector. Specifically, a single-element liquid oxygen/kerosene injector based on a canonical design was manufactured from inconel using Direct Metal Laser Sintering at two different coaxial recess depths. Cold-flow testing for the as-manufactured baseline injector found a reduction in the designed discharge coefficients, which is primarily attributed to increased surface roughness inherent in the AM process.
    [Show full text]
  • CCP Meet the Crew Brochure
    SpaceX Demo 2 Boeing Crew Flight Test National Aeronautics and Stay connected with NASA’s Space Administration Commercial Crew Program: www.twitter.com/commercial_crew Bob Behnken Doug Hurley Nicole Aunapu Mann Chris Ferguson Mike Fincke NASA Astronaut NASA Astronaut www.facebook.com/NASACommercialCrew NASA Astronaut Boeing Astronaut NASA Astronaut Air Force Colonel Marine Corps Colonel (retired) Marine Corps Lt Colonel Navy Captain (retired) Air Force Colonel (retired) Flew aboard space shuttle Piloted space shuttle Endeavor for Selected as an Astronaut in 2013, Piloted space shuttle Atlantis for Aboard shuttle Endeavour on Endeavour twice as a Mission STS-127 and Atlantis for STS-135, www.nasa.gov/commercialcrew this is Nicole’s first spaceflight. STS-115, and commanded shuttle STS-134, Fincke served as Specialist, first on STS-123 and the final space shuttle mission. Endeavour on STS-126 and Atlantis Mission Specialist 1 on the flight then on STS-130. on STS-135, the final flight of the deck and as a spacewalker and Space Shuttle Program. robotic arm operator. blogs.nasa.gov/commercialcrew SpaceX’s First Operational Mission Boeing’s First Operational Mission MEET THE Mike Hopkins Victor Glover Suni Williams Josh Cassada NASA Astronaut NASA Astronaut NASA Astronaut NASA Astronaut Air Force Colonel Navy Commander Navy Captain (retired) Navy Commander Spent 166 days on the Selected as an Astronaut in 2013, Spent 322 days in space on two Selected as an Astronaut in 2013, International Space Station for this is Victor’s first spaceflight. space station missions, Expeditions this is Josh’s first spaceflight. Expeditions 37/38. 14/15 and Expeditions 32/33.
    [Show full text]
  • Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report
    PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies Space Studies Board Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NNH06CE15B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.
    [Show full text]
  • Final Environmental Assessment for Issuing an Experimental Permit to Spacex for Operation of the Dragonfly Vehicle at the Mcgregor Test Site, Mcgregor, Texas
    THIS PAGE LEFT INTENTIONALLY BLANK Final Environmental Assessment for Issuing an Experimental Permit to SpaceX for Operation of the DragonFly Vehicle at the McGregor Test Site, McGregor, Texas AGENCY: Federal Aviation Administration (FAA), lead; National Aeronautics and Space Administration, cooperating agency. ABSTRACT: This Final Environmental Assessment (EA) addresses the potential environmental impacts of FAA’s Proposed Action of issuing an experimental permit to Space Exploration Technologies Corp. (SpaceX) for operation of the DragonFly reusable launch vehicle (RLV) at the McGregor test site, in McGregor, Texas. This Final EA evaluates the potential impacts of the operation of the DragonFly RLV as well as construction of a launch pad. Potential environmental impacts of the Proposed Action and the No Action Alternative analyzed in detail in this Final EA include impacts to air quality; noise and compatible land use; Department of Transportation Act: Section 4(f); historical, architectural, archaeological, and cultural resources; fish, wildlife, and plants; water quality (surface waters, groundwater, wetlands, and floodplains); natural resources and energy supply; hazardous materials, pollution prevention, and solid waste; light emissions and visual impacts; and socioeconomics, environmental justice, and children’s environmental health risks and safety risks. Potential cumulative impacts of the Proposed Action and the No Action Alternative are also addressed in this Final EA. PUBLIC REVIEW PROCESS: In accordance with the National Environmental Policy Act of 1969, as amended (NEPA; 42 United States Code 4321, et seq.), Council on Environmental Quality NEPA implementing regulations (40 Code of Federal Regulations Parts 1500 to 1508), and FAA Order 1050.1E, Environmental Impacts: Policies and Procedures, Change 1, the FAA published a Notice of Availability of the Draft EA in the Federal Register on May 21, 2014, which started a 30‐day public review and comment period.
    [Show full text]
  • The Commercial Satellite Industry: What’S up and What’S on the Horizon
    S. HRG. 115–569 THE COMMERCIAL SATELLITE INDUSTRY: WHAT’S UP AND WHAT’S ON THE HORIZON HEARING BEFORE THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 25, 2017 Printed for the use of the Committee on Commerce, Science, and Transportation ( Available online: http://www.govinfo.gov U.S. GOVERNMENT PUBLISHING OFFICE 35–753 PDF WASHINGTON : 2019 VerDate Nov 24 2008 13:09 Mar 27, 2019 Jkt 000000 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\GPO\DOCS\35753.TXT JACKIE SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION JOHN THUNE, South Dakota, Chairman ROGER F. WICKER, Mississippi BILL NELSON, Florida, Ranking ROY BLUNT, Missouri MARIA CANTWELL, Washington TED CRUZ, Texas AMY KLOBUCHAR, Minnesota DEB FISCHER, Nebraska RICHARD BLUMENTHAL, Connecticut JERRY MORAN, Kansas BRIAN SCHATZ, Hawaii DAN SULLIVAN, Alaska EDWARD MARKEY, Massachusetts DEAN HELLER, Nevada CORY BOOKER, New Jersey JAMES INHOFE, Oklahoma TOM UDALL, New Mexico MIKE LEE, Utah GARY PETERS, Michigan RON JOHNSON, Wisconsin TAMMY BALDWIN, Wisconsin SHELLEY MOORE CAPITO, West Virginia TAMMY DUCKWORTH, Illinois CORY GARDNER, Colorado MAGGIE HASSAN, New Hampshire TODD YOUNG, Indiana CATHERINE CORTEZ MASTO, Nevada NICK ROSSI, Staff Director ADRIAN ARNAKIS, Deputy Staff Director JASON VAN BEEK, General Counsel KIM LIPSKY, Democratic Staff Director CHRIS DAY, Democratic Deputy Staff Director RENAE BLACK, Senior Counsel (II) VerDate Nov 24 2008 13:09 Mar 27, 2019 Jkt 000000 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 S:\GPO\DOCS\35753.TXT JACKIE C O N T E N T S Page Hearing held on October 25, 2017 .........................................................................
    [Show full text]
  • Overview of the In-Space Manufacturing Technology Portfolio
    NASA & ISS National Lab Microgravity Materials Science Overview of the In-Space Workshop Manufacturing Technology Portfolio Atlanta, GA July 29, 2019 Tracie Prater, Ph.D. Diane Risdon Jennifer. Edmunson, Ph.D. Frank Ledbetter, Ph.D. Kevin Wheeler, Ph.D. Vasyl Hafiychuk, Ph.D. Christopher Roberts, Ph.D. Mike Fiske Leigh Elrod Why manufacture in space: The logistics quandary of long endurance spaceflight Each square represents 1000 kg • Based on historical data, 95% of spares will never be used • Impossible to know which spares will be needed Image credit: Bill Cirillo • Unanticipated system issues always appear, even after years of (LaRC) and Andrew Owens (MIT) testing and operations 2 In-space manufacturing removes constraints Constraint1 Constraint removed by ISM? Structures must be designed for launch ISM enables structures which are loads. optimized for operation in space, not for launch loads. Structures must fit within launch vehicle ISM enables structures whose size is payload fairings. limited only by the fabrication volume of the ISM capability. Materials must be disposed of at the end Materials can be recycled and used for of their lifecycle. further manufacturing. All the spare parts and equipment needed Spare parts can be made on-demand. ISM for on-orbit servicing or repair and capabilities can enable on-orbit servicing replacement activities must be and repair of equipment. prepositioned. Component reliability and redundancy Redundancy is augmented by ISM (R&R) largely driven by mission capability to make components on life/duration. demand. R&R requirements may be reduced in some instances when an ISM capability is present. Paradigm shift 1.
    [Show full text]