A Taxonomic Revision of Aphelia (Centrolepidaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VESSELS in ERIOCAULACEAE By
IAWA Journ al, Vol. 17 (2), 1996: 183-204 VESSELS IN ERIOCAULACEAE by Jennifer A. Thorsch & Vernon I. Cheadle I Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93 106, U.S.A. SUMMARY The occ urrence and level of specialization of vesse ls in 70 species representing 12 genera of Eriocaulaceae are presented. In alI species of Eriocaulaceae and in alI parts of the plant examined, vessels with simple perforations have been identified . Correlations between level of specia lization of vessel members and ecological conditi ons are reported for species from diverse habitats and species with distinct differences in habit. The pattern of origin and specialization of tracheary celIs in Erio caulaceae was compared to tracheary data for Xyridaceae , Rapateaceae, Restionaceae and Centrolepidaceae. The evolutionary position of these families has been regarded as close to Eriocaulaceae. Key words: Eriocaulaceae, vessels, perforation plates, phylogenetic posi tion. INTRODUCTION This paper provides detailed information about perforation plates of vessels in Erio caulaceae, the 29th family we have similarly examined in monocotyledons. The near ly complete list of families analyzed in detail is given in the literature cited in the paper on Commelinales (Cheadle & Kosakai 1980). Our studies on the tracheary elements in monocotyledons have included families and species from a broad range of habits, habitats and geographical sites around the world. Families for study were selected based on three criteria: I) presence of alI plant parts, 2) variety of habits and habitats, and 3) broad representation of the species within the family. The data on tracheids and vessels from these broadly based studies led to the folIowing brief conclusions. -
Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis Kåre Bremer Uppsala University
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 3 2006 Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis Kåre Bremer Uppsala University Thomas Janssen Muséum National d'Histoire Naturelle Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Bremer, Kåre and Janssen, Thomas (2006) "Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/3 Aliso 22, pp. 22-27 © 2006, Rancho Santa Ana Botanic Garden GONDWANAN ORIGIN OF MAJOR MONO COT GROUPS INFERRED FROM DISPERSAL-VICARIANCE ANALYSIS KARE BREMERl.3 AND THOMAS JANSSEN2 lDepartment of Systematic Botany, Evolutionary Biology Centre, Norbyvagen l8D, SE-752 36 Uppsala, Sweden; 2Museum National d'Histoire Naturelle, Departement de Systematique et Evolution, USM 0602: Taxonomie et collections, 16 rue Buffon, 75005 Paris, France 3Corresponding author ([email protected]) ABSTRACT Historical biogeography of major monocot groups was investigated by biogeographical analysis of a dated phylogeny including 79 of the 81 monocot families using the Angiosperm Phylogeny Group II (APG II) classification. Five major areas were used to describe the family distributions: Eurasia, North America, South America, Africa including Madagascar, and Australasia including New Guinea, New Caledonia, and New Zealand. In order to investigate the possible correspondence with continental breakup, the tree with its terminal distributions was fitted to the geological area cladogram «Eurasia, North America), (Africa, (South America, Australasia») and to alternative area cladograms using the TreeFitter program. -
Plant Life of Western Australia
INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm. -
(Centrolepidaceae) in Australia
J. Adelaide Bot. Gard. 15(1): 1-63 (1992) A TAXONOMIC REVISION OF CENTROLEPIS (CENTROLEPIDACEAE) IN AUSTRALIA D. A. Cooke Animal and Plant Control Commission of South Australia GPO Box 1671, Adelaide, South Australia 5001 Abstract Centrdepis in Australia is revised and twenty species are recognised. This revision is based on morphological features that are discussed in relation to the biology of the genus. One new species, C. curta, and a new subspecies, C. strigosa subsp. rupestris, are described and illustrated. The new combinations C. monogyna subsp. paludicola and C. strigosa subsp. pulvinata are made. Introduction Centrolepis is a genus of small annual and perennial monocots. It forms, with Aphelia and Gaimardia, the minor family Centrolepidaceae. The family has its main centre of diversity in Australia with 29 species; a few occur in New Zealand, south-eastern Asia and South America. The close affinity of the Centrolepidaceae to the Restionaceae, and its remoteness from the two genera segregated by Hamann (1976) as the Hydatellaceae, are widely recognised in contemporary systems of classification (Cronquist, 1981; Dahlgren & Clifford, 1982; Takhtajan, 1980). Taxonomic history The genus first became known from material of the near-coastal species sent to Europe by the early botanist-explorers and collectors. In 1770 Banks and Solander on the Endeavour collected specimens of Centrolepis, now referred to C. banksii and C. exserta, that they tentatively labelled as species of Schoenus (Cyperaceae). Labillardière (1804) based the new genus Centrolepis, which he placed under Monandria Monogynia in the Linnaean system, on a Tasmanian specimen. Robert Brown (1810), using Banks' and Solander's material and his own collections from the voyage of the Investigator around Australia in 1801-4, drafted manuscript epithets for a further twelve Centrolepis species. -
Centrolepidosporium Sclerodermum, Gen. Et Sp. Nov. (Ustilaginomycetes) from Australia
MYCOLOGIA BALCANICA 4: 1–4 (2007) 1 Centrolepidosporium sclerodermum, gen. et sp. nov. (Ustilaginomycetes) from Australia Roger G. Shivas * & Kálmán Vánky Plant Pathology Herbarium, Queensland Department of Primary Industries and Fisheries, 80 Meiers Road, Indooroopilly, Queensland 4068, Australia Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany Received 24 November 2006 / Accepted: 14 February 2007 Abstract. A new genus, Centrolepidosporium, is proposed to accommodate a new smut fungus, C. sclerodermum, collected in Australia on Centrolepis exserta. Th e new species is unique in that it produces tightly packed spores in spore balls surrounded by a cortex of sterile cells. Th is is the fi rst report of a smut fungus on the plant family Centrolepidaceae. Key words: new species, smut fungi, Sporisorium, Tilletia, Tranzscheliella, Urocystis, Ustilaginomycetes Introduction the Northern Territory, Australia, on Centrolepis exserta (R. Br.) Roem. & Schult., which grows across northern Australia Th e Centrolepidaceae is a family of 3 genera (Aphelia, on the margins of streams and wetlands, and moist sites in Centrolepis and Gaimardia) and about 36 species (Mabberley woodland or grassland, mainly on sandy alluvial soils (Cooke 1998), mostly occurring in Australia but also found in New 1992). Th is collection represents both a new species and also Zealand, throughout south-east Asia to Laos with an outlying a new genus (comp. Vánky 2002). Gaimardia species in South America (Cooke 1988). It is a family of small, sedge-like annuals and perennials with greatly reduced unisexual fl owers combined into a pseudanthium, Materials and Methods which is a highly condensed unit infl orescence analogous to a bisexual fl ower but composed of 2-many reduced unisexual Sorus and spore characteristics were studied using dried fl owers (Cooke 1988). -
Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales Author(S) :Thomas J
Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales Author(s) :Thomas J. Givnish, Mercedes Ames, Joel R. McNeal, Michael R. McKain, P. Roxanne Steele, Claude W. dePamphilis, Sean W. Graham, J. Chris Pires, Dennis W. Stevenson, Wendy B. Zomlefer, Barbara G. Briggs, Melvin R. Duvall, Michael J. Moore, J. Michael Heaney, Douglas E. Soltis, Pamela S. Soltis, Kevin Thiele, and James H. Leebens-Mack Source: Annals of the Missouri Botanical Garden, 97(4):584-616. 2010. Published By: Missouri Botanical Garden DOI: URL: http://www.bioone.org/doi/full/10.3417/2010023 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ASSEMBLING THE TREE OF THE Thomas J. Givnish,2 Mercedes Ames,2 Joel R. MONOCOTYLEDONS: PLASTOME McNeal,3 Michael R. McKain,3 P. Roxanne Steele,4 Claude W. dePamphilis,5 Sean W. -
Monocots and Dicots
Australian Plants Society NORTH SHORE GROUP Ku-ring-gai Wildflower Garden Monocotyledons John Ray, at the end of the 17th century realised that there were two radically different kinds of flowering plants, which he called Monocotyledons (one seed leaf) and Dicotyledons (two seed leaves). Modern botany has proved, maintained and amplified the discovery. It has added differences in leaf, flower and internal structure, though none by itself is as distinctive as the number of seed leaves. It’s important to note that a specific plant we regard as a Monocot or a Dicot may not exhibit all the characteristics to be mentioned. A good example of variation includes leaf venation. Dicots are now recognised (since 1990’s) as paraphyletic. Summary of Main Differences between Monocots and Dicots: Characteristic Monocots Dicots Cotyledons (seed leaves) one two Roots fibrous tap with laterals Flower parts in 3s usually in 4s or 5s Leaf venation parallel usually netlike usually Stems: primary vascular bundles scattered in a ring Stems: true secondary growth absent present usually with vascular cambium ___ A contrast in the number of flower parts: Monocots: 3 or 6 (Patersonia sericea) Dicots: 4 or 5 (Crowea saligna) 1 Leaf Structure and Venation Sometimes included as a difference is that monocot leaves generally do not have a central vein or petiole (leaf stem) and often have a stem clasping leaf. The leaves of monocots are often basal, giving a tufted appearance to the plants. Most have parallel veins. They grow from the base and being eaten off or cut at the tops does not affect their further growth, hence it is possible to graze or mow them without permanent damage. -
Nuclear Genes, Matk and the Phylogeny of the Poales
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations. -
Multigene Analyses of Monocot Relationships: a Summary
Aliso 22, pp. 63–75 ᭧ 2006, Rancho Santa Ana Botanic Garden MULTIGENE ANALYSES OF MONOCOT RELATIONSHIPS: A SUMMARY MARK W. C HASE1,13 MICHAEL F. F AY,1 DION S. DEVEY,1 OLIVIER MAURIN,1 NINA RØNSTED,1 T. J ONATHAN DAVIES,1 YOHAN PILLON,1 GITTE PETERSEN,2,14 OLE SEBERG,2,14 MINORU N. TAMURA,3 CONNY B. ASMUSSEN,4 KHIDIR HILU,5 THOMAS BORSCH,6 JERROLD IDAVIS,7 DENNIS W. S TEVENSON,8 J. CHRIS PIRES,9,15 THOMAS J. GIVNISH,10 KENNETH J. SYTSMA,10 MARC A. MCPHERSON,11,16 SEAN W. G RAHAM,12 AND HARDEEP S. RAI12 1Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; 2Botanical Institute, University of Copenhagen, Gothersgade 140, DK-1123 Copenhagen K, Denmark; 3Botanical Gardens, Graduate School of Science, Osaka City University, 2000 Kisaichi, Katano-shi, Osaka 576-0004, Japan; 4Botany Section, Department of Ecology, Royal Veterinary and Agricultural University, Rolighedsvej 21, DK-1958 Frederiksberg C, Denmark; 5Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA; 6Botanisches Institut und Botanischer Garten, Friedrich-Wilhelms-Universita¨t Bonn, Meckenheimer Allee 170, D-53115 Bonn, Germany; 7L. H. Bailey Hortorium and Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA; 8Institute of Systematic Botany, New York Botanical Garden, Bronx, New York 10458, USA; 9Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706, USA; 10Department of Botany, Birge Hall, University of Wisconsin, Madison, Wisconsin 53706, USA; 11Department of Biological Sciences, CW 405, Biological Sciences Centre, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; 12UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 SW Marine Drive, Vancouver, British Columbia V6T 1Z4, Canada. -
CURRICULUM VITAE John Godfrey Conran
CURRICULUM VITAE John Godfrey Conran BORN 1960, October 13, Brisbane, Queensland DEPENDENTS Divorced, with two children CURRENT APPOINTMENT Senior Lecturer: School of Earth & Environmental Sciences, The University of Adelaide QUALIFICATIONS 1985: Ph.D. Botany, Univ. of Qld 1981: B.Sc. (Hons 1), Botany, Univ. of Qld 1980: B.Sc. Botany and Entomology, Univ. of Qld The undergraduate degree was broad-based, with subjects from the Agriculture and Science Faculties, with majors in Entomology and Botany. I completed subjects including biometrics, biochemistry, chemistry, computer science and geology, in addition to subjects offered by the Agriculture, Botany, Entomology and Zoology Departments. In Honours, I studied systematics and population variation in Banksia oblongifolia Cav. (Proteaceae). My Ph.D. studied the evolution and ecology of the net-veined petaloid monocots in the rainforests at Springbrook, SE Qld. PRIZES AND SCHOLARSHIPS 2011 The University of Adelaide, Executive Dean of Sciences Excellence in Teaching Award for staff with more than five years of teaching experience 1995 The University of Adelaide, Faculty of Science, Dean's Certificate of Merit for Excellence in Teaching 1982–5 Commonwealth Postgraduate Research Award, University of Qld 1981 F.A. Perkins Prize in Entomology, University of Qld 1980–1 Australian National University Vacation Scholarship LANGUAGES I can, with appropriate dictionaries, translate scientific documents written in Latin, French, German, Spanish, Italian, Portuguese and Afrikaans, and to a much lesser extent Russian. SPECIAL INTERESTS AND EXPERTISE Morphological and molecular systematics, palaeobotany, reproductive/pollination biology and community ecology of the Australasian flora; especially petaloid monocotyledons, southern conifers, carnivorous plants and weeds. PROFESSIONAL EXPERIENCE (APPOINTMENTS) 2006– Affiliate of the State Herbarium of South Australia 2004– Member of the Australian Centre for Ecology & Evolutionary Biology 2000– Lecturer C: The Univ. -
2 ANGIOSPERM PHYLOGENY GROUP (APG) SYSTEM History Of
ANGIOSPERM PHYLOGENY GROUP (APG) SYSTEM The Angiosperm Phylogeny Group, or APG, refers to an informal international group of systematic botanists who came together to try to establish a consensus view of the taxonomy of flowering plants (angiosperms) that would reflect new knowledge about their relationships based upon phylogenetic studies. As of 2010, three incremental versions of a classification system have resulted from this collaboration (published in 1998, 2003 and 2009). An important motivation for the group was what they viewed as deficiencies in prior angiosperm classifications, which were not based on monophyletic groups (i.e. groups consisting of all the descendants of a common ancestor). APG publications are increasingly influential, with a number of major herbaria changing the arrangement of their collections to match the latest APG system. Angiosperm classification and the APG Until detailed genetic evidence became available, the classification of flowering plants (also known as angiosperms, Angiospermae, Anthophyta or Magnoliophyta) was based on their morphology (particularly that of the flower) and their biochemistry (what kinds of chemical compound they contained or produced). Classification systems were typically produced by an individual botanist or by a small group. The result was a large number of such systems (see List of systems of plant taxonomy). Different systems and their updates tended to be favoured in different countries; e.g. the Engler system in continental Europe; the Bentham & Hooker system in Britain (particularly influential because it was used by Kew); the Takhtajan system in the former Soviet Union and countries within its sphere of influence; and the Cronquist system in the United States. -
Flora of New Zealand Seed Plants
FLORA OF NEW ZEALAND SEED PLANTS CENTROLEPIDACEAE K.A. FORD Fascicle 2 – JUNE 2014 © Landcare Research New Zealand Limited 2014. This copyright work is licensed under the Creative Commons Attribution 3.0 New Zealand license. Attribution if redistributing to the public without adaptation: “Source: Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Landcare Research” CATALOGUING IN PUBLICATION Ford, Kerry A. (Kerry Alison) Flora of New Zealand [electronic resource] : seed plants. Fascicle 2, Centrolepidaceae / K.A. Ford. -- Lincoln, N.Z. : Manaaki Whenua Press, 2014. 1 online resource ISBN 978-0-478-34764-7 (pdf) ISBN 978-0-478-34762-3 (set) 1.Phanerogams -- New Zealand - Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. DOI: 10.7931/J2H41PBX This work should be cited as: Ford, K.A. 2014: Centrolepidaceae. In: Breitwieser, I.; Brownsey, P.J.; Heenan, P.B.; Wilton, A.D. Flora of New Zealand - Seed Plants. Fascicle 2. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/J2H41PBX Cover image: Centrolepis ciliata, habit of cushion (near Lake Te Anau). Contents Introduction..............................................................................................................................................1 Taxa Centrolepidaceae Endl. ..................................................................................................................... 2 Centrolepis Labill. .............................................................................................................................