Chapter 4 Hydrology and Water Resources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evapotranspiration in the Urban Heat Island Students Will Be Able To: Explain Transpiration in Plants
Objectives: Evapotranspiration in the Urban Heat Island Students will be able to: explain transpiration in plants. Explain evapotranspiration in the environment Background: Objectives: Living in the desert has always been a challenge for people and other living organisms. observe transpiration by collecting water vapor Students will be able to: There is too little water and, in most cases, too much heat. As Phoenix has grown, in plastic bags, which re-condenses into liquid • observe and explain tran- the natural environment has been transformed from the native desert vegetation into water as it cools. spiration. a diverse assemblage of built materials, from buildings, to parking lots, to roadways. measure and compare changes in air tempera- • explain evapotranspira- Concrete and asphalt increase mass density and heat-storage capacity. This in turn ture due to evaporation from a wet surface vs. tion in the environment means that heat collected during the day is slowly radiated back into the environment a dry one. • measure and compare at night. The average nighttime low temperature in Phoenix has increased by 8ºF over changes in air tempera- the last 30 years. For the months of May through September, the average number of understand that evapotranspiration cools the ture due to evaporation hours per day with temperatures over 100ºF has doubled since 1948. air around plants. from a wet surface vs. a Some researchers have found that the density and diversity of plants moderate tem- relate evapotranspiration to desert landscap- dry one. peratures in neighborhoods (Stabler et al., 2005). Landscaping appears to be one way ing choices in an urban heat island. -
Using Water Balance Models to Approximate the Effects of Climate Change on Spring Catchment Discharge: Mt
USING WATER BALANCE MODELS TO APPROXIMATE THE EFFECTS OF CLIMATE CHANGE ON SPRING CATCHMENT DISCHARGE: MT. HANANG, TANZANIA Randall E. Fish A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 © 2011 Randall E. Fish UMI Number: 1492078 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 1492078 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346 This thesis, “Using Water Balance Models to Approximate the Effects of Climate Change on Spring Catchment Discharge: Mt. Hanang, Tanzania,” is hereby approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY. Department of Geological and Mining Engineering and Sciences Signatures: Thesis Advisor _________________________________________ Dr. John Gierke Department Chair _________________________________________ Dr. Wayne Pennington Date _________________________________________ TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... -
5.15 Water Pollution and Hydrologic Impacts 5.15.1 Chapter Index 5.15
Transportation Cost and Benefit Analysis II – Water Pollution Victoria Transport Policy Institute (www.vtpi.org) 5.15 Water Pollution and Hydrologic Impacts This chapter describes water pollution and hydrologic impacts caused by transport facilities and vehicle use. 5.15.1 Chapter Index 5.15 Water Pollution and Hydrologic Impacts ........................................................... 1 5.15.2 Definitions .............................................................................................. 1 5.15.3 Discussion ............................................................................................. 1 5.15.4 Estimates: .............................................................................................. 3 Summary Table ..................................................................................... 3 Water Pollution & Combined Estimates ................................................. 4 Storm Water, Hydrology and Wetlands ................................................. 6 5.15.5 Variability ............................................................................................... 7 5.15.6 Equity and Efficiency Issues .................................................................. 7 5.15.7 Conclusion ............................................................................................. 7 5.15.8 Information Resources .......................................................................... 9 5.15.2 Definitions Water pollution refers to harmful substances released into surface or ground water, -
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Usgs Water Data
USGS WATER RESOURCES ONLINE PLACES TO START USGS Water home page http://water.usgs.gov/ USGS Water data page http://water.usgs.gov/data/ USGS Publications Warehouse http://pubs.er.usgs.gov/ USGS National Real-Time Water Quality http://nrtwq.usgs.gov/ USGS Water Science Centers http://xx.water.usgs.gov/ (where “xx” is two-letter State code) USGS WATER DATA NWIS-Web http://waterdata.usgs.gov/ NWIS-Web is the general online interface to the USGS National Water Information System (NWIS). Discrete water-sample and time-series data from 1.5 million sites in all 50 States. Results from 5 million water samples with 90 million water-quality results are available from a wide variety of retrieval methods including standard and customized map interfaces. Time-series retrievals include instantaneous measurements back to October 2007, soon to include the longer historical record. BioData http://aquatic.biodata.usgs.gov/ Access to results from more than 15,000 macroinvertebrate, algae, and fish community samples from more than 2,000 sites nationwide. StreamStats http://streamstats.usgs.gov/ssonline.html A map-based tool that allows users to easily obtain streamflow statistics, drainage-basin characteristics, and other information for user-selected sites on streams. Water Quality Portal http://www.waterqualitydata.us/ A cooperative service sponsored by USGS, EPA, and NWQMC that integrates publicly available water-quality data from the USGS NWIS database and the EPA STORET data warehouse. NAWQA Data Warehouse http://water.usgs.gov/nawqa/data.html A collection of chemical, biological, and physical water quality data used in the National Water Quality Assessment (NAWQA) program, drawn partly from NWIS and BioData. -
NRSM 385 Syllabus for Watershed Hydrology V200114 Spring 2020
NRSM 385 Syllabus for Watershed Hydrology v200114 Spring 2020 NRSM (385) Watershed Hydrology Instructor: Teaching Assistant: Kevin Hyde Shea Coons CHCB 404 CHCB 404 [email protected] [email protected] Course Time & Location: Office Hours: (or by appointment) Tue/Thu 0800 – 0920h Kevin: Tue & Thu, 1500 – 1600h Natural Science 307 Shea: Wed & Fri, 1200 – 1300h Recommended course text: Physical Hydrology by SL Dingman, 2002 (2nd edition). Other readings as assigned. Additional course information and materials will be posted on Moodle: umonline.umt.edu Science of water resource management in the 21st Century: Sustainability of all life requires fundamental changes in hydrologic science and water resource management. Forty percent of the Earth’s ever-increasing population lives in areas of water scarcity, where the available supply cannot meet basic needs. Water pollution from human activities and increasing water withdrawals for human use impair and threaten entire ecosystems upon which human survival depends. Climate change increases environmental variability, exacerbating drought in some regions while leading to greater hydrologic hazards in others. Higher intensity and more frequent storms generate flooding that is especially destructive in densely developed areas of and where ecosystems are already compromised. Sustainable water resource management starts with scientifically sound management of forested landscapes. Eighty percent of fresh water supplies in the US originate on forested lands, providing over 60% of municipal drinking water. Forests also account for significant portions of biologically complex and vital ecosystems. Multiple land use activities including logging, agriculture, industry, mining, and urban development compromise forest ecosystems and threaten aquatic ecosystems and freshwater supplies. -
Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water-Balance Model, 1996–2010
Prepared in cooperation with the Minnesota Pollution Control Agency Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water-Balance Model, 1996–2010 Scientific Investigations Report 2015–5038 U.S. Department of the Interior U.S. Geological Survey Cover. Map showing mean annual potential recharge rates from 1996−2010 based on results from the Soil-Water-Balance model for Minnesota. Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water- Balance Model, 1996–2010 By Erik A. Smith and Stephen M. Westenbroek Prepared in cooperation with the Minnesota Pollution Control Agency Scientific Investigations Report 2015–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Smith, E.A., and Westenbroek, S.M., 2015, Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996–2010: U.S. -
IRRIGATION WATER BALANCE FUNDAMENTALS Charles M. Burt
“Irrigation Water Balance Fundamentals”. 1999. Conference on Benchmarking Irrigation System Performance Using Water Measurement and Water Balances. San Luis Obispo, CA. March 10. USCID, Denver, Colo. pp. 1-13. http://www.itrc.org/papers/pdf/irrwaterbal.pdf ITRC Paper 99-001 IRRIGATION WATER BALANCE FUNDAMENTALS Charles M. Burt1 ABSTRACT Water balances are essential for making wise decisions regarding water conservation and water management. The paper defines the essential ingredients of water balances, and distinguishes between farm and district-level balances. An example of a hypothetical district-level balance is provided. The importance of listing confidence intervals is highlighted. Classic errors in water balance determination are noted. CONCEPT OF A WATER BALANCE A "water balance" is an accounting of all water volumes that enter and leave a 3- dimensioned space (Fig. 1) over a specified period of time. Changes in internal water storage must also be considered. Both the spatial and temporal boundaries of a water balance must be clearly defined in order to compute and to discuss a water balance. A complete water balance is not limited to only irrigation water or rainwater or groundwater, etc., but includes all water that enters and leaves the spatial boundaries. Fig 1. A Water Balance Requires the Definition of 3-D and Temporal Boundaries, and All Inflows and Outflows Across Those Boundaries As Well As the Change in Storage Within Those Boundaries. 1 Professor and Director, Irrigation Training and Research Center (ITRC), BioResource and Agricultural Engineering Dept., California Polytechnic State Univ. (Cal Poly), San Luis Obispo, CA 93407 ([email protected]). Irrigation Training and Research Center - www.itrc.org “Irrigation Water Balance Fundamentals”. -
Water Balance and Evapotranspiration Monitoring in Geotechnical and Geoenvironmental Engineering
Geotech Geol Eng DOI 10.1007/s10706-008-9198-z ORIGINAL PAPER Water Balance and Evapotranspiration Monitoring in Geotechnical and Geoenvironmental Engineering Yu-Jun Cui Æ Jorge G. Zornberg Received: 21 July 2005 / Accepted: 19 September 2007 Ó Springer Science+Business Media B.V. 2008 Abstract Among the various components of the Keywords Evapotranspiration Á Water balance Á water balance, measurement of evapotranspiration Cover system Á Unsaturated soils Á has probably been the most difficult component to Measurement quantify and measure experimentally. Some attempts for direct measurement of evapotranspiration have included the use of weighing lysimeters. However, 1 Introduction quantification of evapotranspiration has been typi- cally conducted using energy balance approaches or The interaction between ground surface and the indirect water balance methods that rely on quanti- atmosphere has not been frequently addressed in fication of other water balance components. This geotechnical practice. Perhaps the applications where paper initially presents the fundamental aspects of such evaluations have been considered the most are evapotranspiration as well as of its evaporation and in the evaluation of landslides induced by loss of transpiration components. Typical methods used for suction due to precipitations (e.g., Alonso et al. 1995; prediction of evapotranspiration based on meteoro- Shimada et al. 1995; Cai and Ugai 1998; Fourie et al. logical information are also discussed. The current 1998; Rahardjo et al. 1998). Yet, the quantification trend of using evapotranspirative cover systems for and measurement of evapotranspiration has recently closure of waste containment facilities located in arid received renewed interest. This is the case, for climates has brought renewed needs for quantification example, due to the design of evapotranspirative of evapotranspiration. -
Reference-Evapotranspiration-Report
BUREAU OF METEOROLOGY REFERENCE EVAPOTRANSPIRATION CALCULATIONS C.P. Webb FEBRUARY 2010 ABBREVIATIONS ADAM Australian Data Archive for Meteorology ASCE American Society of Civil Engineers AWS Automatic Weather Station BoM Bureau of Meteorology CAHMDA Catchment-scale Hydrological Modelling and Data Assimilation CRCIF Cooperative Research Centre for Irrigation Futures FAO56-PM equation United Nations Food and Agriculture Organisation’s adapted Penman-Monteith equation recommended in Irrigation and Drainage Paper No. 56 (Allen et al. 1998) ETo Reference Evapotranspiration QLDCSC Queensland Climate Services Centre of the BoM SACSC South Australian Climate Services Centre of the BoM VICCSC Victorian Climate Services Centre of the BoM ii CONTENTS Page Abbreviations ii Contents iii Tables iv Abstract 1 Introduction 1 The FAO56-PM equation 2 Input Data 6 Missing Data 10 Pan Evaporation Data 10 References 14 Glossary 16 iii TABLES I. Accuracies of BoM weather station sensors. II. Input data required to compute parameters of the FAO56-PM equation. III. Correlation between daily evaporation data and daily ETo data. iv BUREAU OF METEOROLOGY REFERENCE EVAPOTRANSPIRATION CALCULATIONS C. P. Webb Climate Services Centre, Queensland Regional Office, Bureau of Meteorology ABSTRACT Reference evapotranspiration (ETo) data is valuable for a range of users, including farmers, hydrologists, agronomists, meteorologists, irrigation engineers, project managers, consultants and students. Daily ETo data for 399 locations in Australia will become publicly available on the Bureau of Meteorology’s (BoM’s) website (www.bom.gov.au) in 2010. A computer program developed in the South Australian Climate Services Centre of the BoM (SACSC) is used to calculate these figures daily. Calculations are made using the adapted Penman-Monteith equation recommended by the United Nations Food and Agriculture Organisation (FAO56-PM equation). -
Transpiration Evaporation Evapotranspiration
FAO WaPOR SUB-NATIONAL LEVEL MAPS (30M) ASSESSING THE WATER CONSUMPTION OF CROPS BEKAA, LEBANON 30M 1000 m This map shows the amount of water consumed through evapotranspiration, or the amount of Legend (water consumed, mm/day) Here, land cover classification is used to identify the spatial distribution of various crops. Legend (crop type) water released back into the air through soil evaporation and plant transpiration, per day, in Wetland Tree cover (dense) Irrigated & rainfed wheat millimetres. Timely information on water consumption represents a critical tool for improving 0.1 mm This map shows the land cover classification of the same area as the one represented in water management in agriculture and irrigation. For example, it provides an objective and the evapotranspiration map on the left. This allows for the identification of the most Grassland Orchard (dense) Other crop common information base for discussing consumption-related water quotas, or for monitoring 2.5 mm common crops grown in any area. Bare Other perennial Grapes the impact of irrigation on water resources. All data are made publicly accessible, thereby Artificial Irrigated maize Irrigated orchard (sparse) allowing for participatory planning. Further distinction between evaporation and transpiration, 5.0 mm If information from both maps, land cover and evapotranspiration, are combined, it can Fallow Irrigated potatoes as allowed by WaPOR, provides key information for reducing non-beneficial water help with setting policies to target specific problem areas, and providing farmers with Irrigated other crops 7.5 mm consumption. recommendations on which agronomic practices best suit their cropping patterns. Maize Irrigated vegetables Irrigated other perennial Potato 10 mm Irrigated orchard (dense) Orchard (sparse) Vegetables Irrigated grapes Evapotranspiration is a key component of the water cycle in agriculture and is a combination of evaporation and plant transpiration. -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.