Quaternary International, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Quaternary International, Vol http://www.paper.edu.cn Quaternary International, Vol. 45/46, pp. 135-142, 1998. ~ i Pergamon Copyright © 1997 INQUA/Elsevier Science Ltd Printed in Great Britain. All rights reserved. PII: S 1040-6182(97)00011--6 1040-6182/98 $19.00 THE SEQUENCE OF QUATERNARY GLACIATION IN THE BAYAN HAR MOUNTAINS Zhou Shangzhe and Li Jijun Quaternary Glacial and Environmental Research Center of China, Lanzhou University, Lanzhou 730000, China Four periods of Quaternary glaciation in the Pleistocene have been found in the area of the Bayan Har Mountains. They represent, respectively, the two stages of the Last Glacial age; the penultimate ice age, and an earlier ice age. During the late stage of the Last Glacial age, glaciers developed only near the mountain ridges of the Bayan Har. In the earlier stage, glaciers expanded down to the piedmont of the Bayan Har Mountains and were as much as 40 km long. In the penultimate ice age, an extensive ice cover developed, depositing an areally widespread till sheet. Erratics were transported 60 km from Bayan Har peak to Qingshuihe town to the south, and to Yematan land to the north. Granitic erratics are also distributed over elevated geomorphological positions, such as Chalaping Ridge. The area of ice cover encompassed up to 50,000 km2. Furthermore, evidence including glacial landforms and sediments shows that a larger glaciation existed in this area in an earlier time, possibly during the third most recent (ante-penultimate) glaciation. The scale of this glaciated area is greater than those of the more recent events in the Qinghai-Xizang Plateau, extending over 80,000 km2. This glaciation covered the source area of the Yellow River from Xingsuhai in the west to Duogerangtan in the east, including the areas of Gyaring and Ngoring lakes. Based on the extent and locations of the glaciations, the Bayan Har Stage and Galalahai Stage of the Last Glacial age; the Yematan Ice Age; and the Huanghe Glacial Age can be recognized. © 1997 INQUA/Elsevier Science Ltd INTRODUCTION Mountains is 5268 m a.s.1, and is located at 34°15'N, 97°30'E. The Bayan Har Mountains also represent the The Qinghai-Xizang (Tibet) Plateau, termed 'the roof initial watershed between the Changjiang (Yangtze River) of the world', is the focus of more and more attention and the Hwanghe (Yellow River) (see Fig. 1). because of its important position in global change The orientation of the Bayan Har Mountains is research. The problem of Quaternary glaciation on this controlled by two fault groups, with a north-northwest plateau is always one of the focal points. Whether the alignment. The mountains are composed of gray-green entire Qinghai-Xizang Plateau was covered by a large ice feldspathic sandstone, slate, and limestone of the Bayan sheet in the Pleistocene, or alternatively if a model of Har Group. Near the summit is an exposure of granite. limited glaciation is more realistic, has been disputed The Bayan Har area is one of the two lowest heatedly in recent years. Some geographers did their temperature centers in the Qinghai-Xizang Plateau (the utmost to propose the viewpoint that the plateau was other is the HoH Xil area), because temperature is covered completely by a large ice sheet during the Last controlled by the Mongolian High pressure system in Glacial Maximum (Kuhle, 1987). However, most scien- winter and by the establishment of the Southeast Asian tists suggest that the viewpoint of Kuhle is not convin- Monsoon system in summer. Precipitation during the cingly documented, because only evidence for montane latter period makes this area the most humid center in the glaciers and ice caps has been found on the plateau (Shi inland plateau region. For example, the annual precipita- Yafeng et al., 1991; Derbyshire et al., 1991). Recent work tion is 300-400 mm in Madoi, four times more than in the in the Bayan Har Mountains (Fig. 1) is significant for the HoH Xil area in the interior of the plateau. resultion of this dispute. BAYAN HAR IN THE LAST GLACIAL AGE BAYAN HAR MOUNTAINS Many big rivers diverge from the summit section of the As the source area of the Yellow River, the Bayan Har Bayan Har to Changjiang and Huanghe. The valleys Mountains are known worldwide. The mountains lie in display typical glacial U-shaped cross-sections, and well- the eastern part (33o-35 ° N, 95°-101°E) of the Qunghai- defined moraines are preserved. The Galala River Xizang Plateau, oriented northwest-southeast, and a originates between Bayan Har summit and Bayan Har relative relief of about 1000 m above the plateau surface Pass, and flows initially to the northeast, then to the north. (4300 m a.s.l.). They extend discontinuously approxi- It is a great glaciated valley. The valley mouth and the mately 600 km, from east of Kunlun Pass to the western area directly below are flanked by large moraines along edge of the Zoige Basin. The summit of the Bayan Har both sides. The moraines extend downwards to 4400 m IThe project was aided financially by National Natural Science elevation, where Galala Lake, with an area of 24 km 2, is Foundation of China. impounded by the moraines. The Heihe River, which 135 转载 中国科技论文在线 http://www.paper.edu.cn 136 Z. Shangzhe et al. 80 90 1190 4 .... I .... 30' i 8-0-........ 00 16o FIG. I. Location of the Bayan Har Mountains on the Qinghai-Tibet Plateau x-axis °E, y axis °N. flows out of the lake, is a tributary of Huanghe. The these valleys at 4406 m elevation. The end moraine is moraines have heights of 100--200 m, with distances of 120 m high. The distances from the moraine to the 8-10 krn between the two sides. The terminus of the headwaters of the three branches are 56 km, 46 kin, and moraines is 44 km from the headwaters, indicating that a 50 km, respectively, indicating the occurence of large, huge valley glacier developed in the past. At the mouth of coalescing mountain glaciers. These glacial valleys and the valley, at 4507 m a.s.l., there is another end moraine. sediments demonstrate the northeastern part of the which has been eroded by the river, and above the glaciation affecting Bayan Har during the last glacial moraine there are numerous small lakes. The upper age. Above 4580 m elevation, where the three branches moraine is 21 km from the headwaters, showing that the join, smaller moraines are evident from topographic glacier also stopped here for a long time, and thus maps. Similar situations are found in the north and the represents another glacial event. southeast. West of Galala River are other rivers, including Across Bayan Har Pass along the Qingkang Highway, Gaerlawang, Lelahewang, and Lela rivers, which also the headwater region of the Zhaqu River, the upper flow in glaciated valleys. The Lela River, flowing to segment of Yalongjiang, is located. This river also flows Nyoring Lake, is the largest of these streams. As in the through a large glaciated valley, and till deposits can be Galala valley, moraines are present in these glaciated seen everywhere. The terminus of the last glaciation troughs. Together, these troughs and moraines, including appears to have been near Zhalagou. those of the Galala valley, constitute the glaciation system In addition to the main peak of Bayan Har Mountain, of the north slope of the summit section of Bayan Har. there exist other relics of the last glaciation in the area. Laqu Mr. (5175 m a.s.1.) and Zengbugongmazha Mt. For example, 75 km south of the Bayan Har summit, is (5226 m a.s.1.) are located 60 km southeast of the summit. Sexichayima (5131 m a.s.1.), around which very typical The Baeangchun River, a tributary of Yalongjiang, flows valleys and moraines are distributed. At the west bank of southward from this area. In this valley, thick till deposits Zhaqu, near Sexichayima, a large glacial deposit is are well preserved. The lateral moraine is up to 200 m in present, and glacially striated stones are extremely height. The Baeangchun consists of two branches. The common in this till. The moraines are tens of metres in glacier responsible was a composite feature, and the height, and the deposits originated from the mountains moraine formed from the confluence is approximately along the north bank of the Tongtian River. The glacial 300 m high. It is 33 km from the end moraine, situated at valleys are more than 20 km long. 4400 m a.s.l., to the headwater area. Relatively smaller In the west section of the Bayan Har is another moraines can be found at 4600 m in the two tributary important center of glaciation. In this area, where valleys, and above these moraines are many small lakes. elevations exceed 5000 m and the highest peak, Gong- These glacial relics represent the glaciation system of the malongzangu, reaches 5336 m a.s.l., many glaciated southest slope of the Bayan Har summit section during valleys are distributed normal to the northwest-southeast the last glacial age. topographic divide. These glaciated troughs extend l0 to Another large branch of Huanghe in this area is Requ, 15 km from the plateau summits. In addition, between which flows to Huanghe to the east of Yematan after Gyaring Lake and Qumarleb County, mountainous areas meeting the Heihe. Its upper section is named Chaqu, and higher than 5000 m a.s.1, display glaciated valleys, originates from three tributary streams which rise undoubtably the products of the last glaciation. respectively to the east of Bayan Har Pass, and from The evidence from these well-preserved topographic two other summits at 5249 m and 5175 m a.s.l.
Recommended publications
  • Elevation‐Dependent Thermal Regime and Dynamics of Frozen Ground in the Bayan Har Mountains, Northeastern Qinghai‐Tibet Plat
    Received: 14 December 2017 Revised: 20 September 2018 Accepted: 26 September 2018 DOI: 10.1002/ppp.1988 RESEARCH ARTICLE Elevation‐dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai‐ Tibet Plateau, southwest China Dongliang Luo1 | Huijun Jin1,2 | Xiaoying Jin1,3,4 | Ruixia He1 | Xiaoying Li1,3,4 | Reginald R. Muskett4 | Sergey S. Marchenko1,4 | Vladimir E. Romanovsky4 1 State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco‐ Abstract Environment and Resources, Chinese To investigate and monitor permafrost in the Bayan Har Mountains (BHM), north‐ Academy of Sciences, Lanzhou, China eastern Qinghai–Tibet Plateau, southwest China, 19 boreholes ranging from 20 to 2 School of Civil Engineering, Harbin Institute of Technology, Harbin, China 100 m in depth were drilled along an elevational transect (4,221–4,833 m a.s.l.) from 3 University of Chinese Academy of Sciences, July to September 2010. Measurements from these boreholes demonstrate that Beijing, China ground temperatures at the depth of zero annual amplitude (TZAA) are generally higher 4 Geophysical Institute, University of Alaska −1 Fairbanks, Fairbanks, Alaska, USA than −2.0°C. The lapse rates of TZAA are 4 and 6 °C km , and the lower limits of per- Correspondence mafrost with TZAA < −1°C are approximately 4,650 and 4,750 m a.s.l. on the northern Dongliang Luo, State Key Laboratory of (near Yeniugou) and southern (near Qingshui'he) slopes, respectively. T changes Frozen Soil Engineering, Northwest Institute ZAA of Eco‐Environment and Resources, Chinese abruptly within short distances from −0.2 to +1.2°C near the northern lower limits Academy of Sciences, Lanzhou 730000, China.
    [Show full text]
  • Qinghai Information
    Qinghai Information Overview Qinghai is located in northwestern China. The capital and largest city, Xining, lies roughly 50 miles (80 km) from the western border and approximately 30 miles (48 km) north of the Yellow River (Huang He). It is the nation’s 4th largest province with almost 279,000 square miles (more accurately 721,000 sq km). However, the total population places 30th in the country with only 5,390,000 people. The province earns its name from the salt lake Qinghai, located in the province’s northeast less than 100 miles (161 km) west of Xining. Qinghai Lake is the largest lake in China, the word literally meaning “blue sea”. Qinghai Geography Qinghai province is located on the northeastern part of the Tibetan Plateau of western China. The Altun Mountains run along the northwestern horizontal border with Xinjiang while the Hoh Xil Mountains run horizontally over the vertical portion of that border. The Qilian Mountains run along the northeastern border with Gansu. The Kunlun Mountains follow the horizontal border between Tibet (Xizang) and Xinjiang. The Kunlun Mountains gently slope southward as the move to central Qinghai where they are extended eastward by the Bayan Har Mountains. The Dangla Mountains start in Tibet south of the Kunlun Mountains to which they run parallel. The Ningjing Mountains start in the south of Qinghai and move southward into Tibet then Yunnan. The famous Yellow River commences in this Qinghai China. A small river flows from the west into Gyaring Lake where a small outlet carries water eastward to Ngoring Lake. The Yellow River then starts on the east side of Ngoring Lake.
    [Show full text]
  • Simulating the Route of the Tang-Tibet Ancient Road for One Branch of the Silk Road Across the Qinghai-Tibet Plateau
    RESEARCH ARTICLE Simulating the route of the Tang-Tibet Ancient Road for one branch of the Silk Road across the Qinghai-Tibet Plateau 1 1 2 3 1 Zhuoma Lancuo , Guangliang HouID *, Changjun Xu , Yuying Liu , Yan Zhu , Wen Wang4, Yongkun Zhang4 1 Key Laboratory of Physical Geography and Environmental Process, College of Geography, Qinghai Normal University, Xining, Qinghai Province, China, 2 Key Laboratory of Geomantic Technology and Application of Qinghai Province, Provincial geomantic Center of Qinghai, Xining, Qinghai Province, China, 3 Department of a1111111111 computer technology and application, Qinghai University, Xining, Qinghai Province, China, 4 State Key a1111111111 Laboratories of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, China a1111111111 a1111111111 * [email protected] a1111111111 Abstract As the only route formed in the inner Qinghai-Tibet plateau, the Tang-Tibet Ancient Road OPEN ACCESS promoted the extension of the Overland Silk Roads to the inner Qinghai-Tibet plateau. Con- Citation: Lancuo Z, Hou G, Xu C, Liu Y, Zhu Y, sidering the Complex geographical and environmental factors of inner Qinghai-Tibet Pla- Wang W, et al. (2019) Simulating the route of the teau, we constructed a weighted trade route network based on geographical integration Tang-Tibet Ancient Road for one branch of the Silk Road across the Qinghai-Tibet Plateau. PLoS ONE factors, and then adopted the principle of minimum cost and the shortest path on the net- 14(12): e0226970. https://doi.org/10.1371/journal. work to simulate the ancient Tang-Tibet Ancient Road. We then compared the locations of pone.0226970 known key points documented in the literature, and found a significant correspondence in Editor: Wenwu Tang, University of North Carolina the Qinghai section.
    [Show full text]
  • The Status of Glaciers in the Hindu Kush-Himalayan Region
    The Status of Glaciers in the Hindu Kush-Himalayan Region The Status of Glaciers in the Hindu Kush-Himalayan Region Editors Samjwal Ratna Bajracharya Basanta Shrestha International Centre for Integrated Mountain Development, Kathmandu, Nepal, November 2011 Published by International Centre for Integrated Mountain Development GPO Box 3226, Kathmandu, Nepal Copyright © 2011 International Centre for Integrated Mountain Development (ICIMOD) All rights reserved. Published 2011 ISBN 978 92 9115 215 5 (printed) 978 92 9115 217 9 (electronic) LCCN 2011-312013 Printed and bound in Nepal by Sewa Printing Press, Kathmandu, Nepal Production team A Beatrice Murray (Consultant editor) Andrea Perlis (Senior editor) Dharma R Maharjan (Layout and design) Asha Kaji Thaku (Editorial assistant) Note This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. ICIMOD would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from ICIMOD. The views and interpretations in this publication are those of the author(s). They are not attribuTable to ICIMOD and do not imply the expression of any opinion concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries, or the endorsement of any product. This publication is available in electronic form at www.icimod.org/publications Citation: Bajracharya, SR; Shrestha, B (eds) (2011) The status of glaciers in the Hindu Kush-Himalayan region.
    [Show full text]
  • Review of Snow Cover Variation Over the Tibetan
    Earth-Science Reviews 201 (2020) 103043 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system T ⁎ Qinglong Youa, , Tao Wub, Liuchen Shenb, Nick Pepinc, Ling Zhangd, Zhihong Jiangd, Zhiwei Wua, Shichang Kange,f, Amir AghaKouchakg a Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China b College of Geography and Environment Sciences, Zhejiang Normal University, Jinhua 321004, China c Department of Geography, University of Portsmouth, PO1 3HE, UK d Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China e State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou 730000, China f CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China g Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, United States of America ARTICLE INFO ABSTRACT Keywords: Variation in snow cover over the Tibetan Plateau (TP) is a key component of climate change and variability, and Tibetan Plateau critical for many hydrological and biological processes. This review first summarizes recent observed changes of Snow cover snow cover over the TP, including the relationship between the TP snow cover and that over Eurasia as a whole; Asian summer monsoon recent climatology and spatial patterns; inter-annual variability and trends; as well as projected changes in snow Climate change cover. Second, we discuss the physical causes and factors contributing to variations in snow cover over the TP, including precipitation, temperature, and synoptic forcing such as the Arctic Oscillation and the westerly jet, and large scale ocean-atmosphere oscillations such as the El Niño–Southern Oscillation (ESNO), the Indian Ocean dipole, and the southern annular mode.
    [Show full text]
  • Variability in Snow Cover Phenology in China from 1952 to 2010
    Hydrol. Earth Syst. Sci., 20, 755–770, 2016 www.hydrol-earth-syst-sci.net/20/755/2016/ doi:10.5194/hess-20-755-2016 © Author(s) 2016. CC Attribution 3.0 License. Variability in snow cover phenology in China from 1952 to 2010 Chang-Qing Ke1,2,6, Xiu-Cang Li3,4, Hongjie Xie5, Dong-Hui Ma1,6, Xun Liu1,2, and Cheng Kou1,2 1Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China 2Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing 210023, China 3National Climate Center, China Meteorological Administration, Beijing 100081, China 4Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Faculty of Geography and Remote Sensing, Nanjing University of Information Science & Technology, Nanjing 210044, China 5Department of Geological Sciences, University of Texas at San Antonio, Texas 78249, USA 6Collaborative Innovation Center of South China Sea Studies, Nanjing 210023, China Correspondence to: Chang-Qing Ke ([email protected]) Received: 12 February 2015 – Published in Hydrol. Earth Syst. Sci. Discuss.: 30 April 2015 Revised: 11 January 2016 – Accepted: 3 February 2016 – Published: 19 February 2016 Abstract. Daily snow observation data from 672 stations in 1 Introduction China, particularly the 296 stations with over 10 mean snow cover days (SCDs) in a year during the period of 1952–2010, are used in this study. We first examine spatiotemporal vari- Snow has a profound impact on the surficial and atmospheric ations and trends of SCDs, snow cover onset date (SCOD), thermal conditions, and is very sensitive to climatic and en- and snow cover end date (SCED).
    [Show full text]
  • Qaidam Basin
    Qaidam Basin Spread across the vast territory of China are hundreds of basins, where developed sedimentary rocks originated from the Paleozoic to the Cenozoic eras, covering over four million square kilometers. Abundant oil and gas resources are entrapped in strata ranging from the eldest Sinian Suberathem to the youngest quaternary system. The most important petroliferous basins in China include Tarim, Junggar, Turpan, Qaidam, Ordos, Songliao, Bohai Bay, Erlian, Sichuan, North Tibet, South Huabei and Jianghan basins. There are also over ten mid- to-large sedimentary basins along the extensive sea area of China, with those rich in oil and gas include the South Yellow Sea, East Sea, Zhujiangkou and North Bay basins. These basins, endowing tremendous hydrocarbon resources with various genesis and geologic features, have nurtured splendid civilizations with distinctive characteristics portrayed by unique natural landscape, specialties, local culture, and the people. In China, CNPC’s oil and gas operations mainly focus in nine petroliferous basins, namely Tarim, Junggar, Turpan, Ordos, Qaidam, Songliao, Erlian, Sichuan, and the Bohai Bay. More than 1 billion years ago, Qaidam Basin was an integral part of North China geologic unit. At Qaidam Basin is China’s highest and the beginning of the Eopaleozoic era (about 560 most evaporative inland basin situated million years ago), it was separated and surrounded in the border area of the provinces of by shallow sea as a result of plate disintegration. Qinghai, Gansu and the autonomous At the end of the Eopaleozoic era (about 400 region of Xinjiang. The basin lies in a million years ago), the basin began to uplift due crescent valley surrounded by plateaus to the intense tectonic movement caused by plate and the mountains of Altyn-Tagh, Qilian subduction and collision, and later became a land and Kunlun.
    [Show full text]
  • Palaeoglaciology of the Northeastern Tibetan Plateau
    Palaeoglaciology of the northeastern Tibetan Plateau Jakob Heyman Department of Physical Geography and Quaternary Geology Stockholm University “The assumption that one finds snow and ice everywhere in Tibet is not true” Heinrich Harrer: Seven years in Tibet (1953) © 2010 Jakob Heyman ISSN: 1653-7211 ISBN: 978-91-7447-074-1 Paper I © 2008 Journal of Maps Paper II © 2009 Elsevier Paper III © 2009 John Wiley & Sons Ltd Cover: Central Bayan Har Shan seen from the upper Galala Valley Printed by Universitetsservice US-AB, Stockholm, Sweden Doctoral dissertation 2010 Department of Physical Geography and Quaternary Geology Stockholm University ABSTRACT This study concerns the palaeoglaciation of the northeastern Tibetan Plateau, with emphasis on the Bayan Har Shan (Shan = Mountain) in the headwaters of Huang He (Yellow River). To reconstruct past glacier development multiple techniques, including remote sensing, field investigations, cosmogenic exposure dating, and numerical modelling have been employed. Analysis of the large- scale geomorphology indicates that glacial erosion has been dominant in the elevated mountain areas on the low-relief plateau, whereas fluvial erosion outpaces glacial erosion along the plateau margin. Landform and sediment records yield evidence for multiple local glaciations, restricted to the highest mountain areas, and a maximum glaciation beyond the mountain front. Absence of data supporting the former presence of proposed ice sheets, plateau-wide or regional, tentatively indicates that no ice sheet glaciation occurred on the northeastern Tibetan Plateau. Cosmogenic exposure dating of boulders, surface pebbles, and sediment sections in central Bayan Har Shan indicates that its record of past glaciations predates the global Last Glacial Maximum (LGM).
    [Show full text]
  • Review of Snow Cover Variation Over the Tibetan Plateau
    1 Review of snow cover variation over the Tibetan Plateau 2 and its influence on the broad climate system 3 Qinglong You 1*, Tao Wu2, Liuchen Shen2, Nick Pepin3, Ling Zhang5, Zhihong 4 Jiang4, Zhiwei Wu1, Shichang Kang5,6, Amir AghaKouchak7 5 1. Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric 6 Sciences, Fudan University, 200438, Shanghai, China; 7 2. College of Geography and Environment Sciences, Zhejiang Normal University, 8 Jinhua 321004, China; 9 3. Department of Geography, University of Portsmouth, PO1 3HE, U.K. ; 10 4. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), 11 Nanjing University of Information Science and Technology (NUIST), Nanjing, 12 210044, China; 13 5. State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, 14 Lanzhou 730000, China; 15 6. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, 16 China; 17 7. Department of Civil and Environmental Engineering, University of California, 18 Irvine, CA 92697, U.S; 19 20 21 22 * Corresponding author E-mail address: [email protected] 23 Abstract: 24 Variation in snow cover over the Tibetan Plateau (TP) is a key component of climate 25 change and variability, and critical for many hydrological and biological processes. This 26 review first summarizes recent observed changes of snow cover over the TP, including 27 the relationship between the TP snow cover and that over Eurasia as a whole; recent 28 climatology and spatial patterns; inter-annual variability and trends; as well as projected 29 changes in snow cover. Second, we discuss the physical causes and factors contributing 30 to variations in snow cover over the TP, including precipitation, temperature, and 31 synoptic forcing such as the Arctic Oscillation and the westerly jet, and large scale 32 ocean-atmosphere oscillations such as the El Niño–Southern Oscillation (ESNO), the 33 Indian Ocean dipole, and the southern annular mode.
    [Show full text]
  • Ecosystem Services Assessment, Trade-Off and Bundles in the Yellow River Basin, China
    Ecosystem Services Assessment, Trade-Off and Bundles in the Yellow River Basin, China Jie Yang ( [email protected] ) Gansu Agricultural University Baopeng Xie Gansu Agricultural University Wenqian Tao Gansu Agricultural University Research Article Keywords: Ecosystem service, Trade-off, Synergy, Ecosystem service bundles, Yellow River Basin Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-607828/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Ecosystem services assessment, trade-off and bundles in the 2 Yellow River Basin, China 3 Jie Yang1﹒Baopeng Xie2﹒Wenqian Tao2 4 1 College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China 5 2 College of Management, Gansu Agricultural University, Lanzhou 730070, China 6 Jie Yang e-mail:[email protected] 7 Abstract: 8 Understanding ecosystem services (ESs) and their interactions will help to formulate effective 9 and sustainable land use management programs.This paper evaluates the water yield (WY), soil 10 conservation (SC), carbon storage (CS) and habitat quality (HQ), taking the Yellow River Basin as 11 the research object, by adopting the InVEST (Integrated Valuation of Ecosystem Services and 12 Trade Offs) model. The Net Primary Productivity (NPP) was evaluated by CASA 13 (Carnegie-Ames-Stanford approach) model, and the spatial distribution map of five ESs were 14 drawn, the correlation and bivariate spatial correlation were used to analyze the trade-off synergy 15 relationships between the five ESs and express them spatially. The results show that NPP and HQ, 16 CS and WY are trade-offs relationship, and other ecosystem services are synergistic.
    [Show full text]
  • Rasbdb Subject Keywords
    Leigh Marymor, Compiler KEYWORD GUIDE A joint project of the Museum of Northern Arizona and the Bay Area Rock Art Research Association KEYWORD GUIDE Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 1 September 15, 2020 KEYWORD GUIDE Mortars, cupules, and pecked curvilinear nucleated forms. Canyon Trail Park, San Francisco Bay Area, California, USA. Compiled by Leigh Marymor, Research Associate, Museum of Northern Arizona. 2 September 15, 2020 KEYWORD GUIDE Aerial Photography .......................................... 9 Archival storage ............................................... 9 Table of Contents Augmented Reality .......................................... 9 Bias ................................................................... 9 INTRODUCTION: .................................................. 7 Casts ................................................................. 9 Classification .................................................... 9 SUBJECT KEYWORDS: ........................................... 8 Digital Sound Recording................................... 9 CULTURAL CONTEXT ..............................................8 Digital Storage ................................................. 9 CULTURAL RESOURCE MANAGEMENT ..................8 Drawing.......................................................... 10 Cultural Tourism ...............................................8 Historic Documentation ................................. 10 Community Involvement ...................................8 Laser Scanning
    [Show full text]
  • Replies to the Editor' Comments
    Replies to the editor’ comments Authors’ replies are in BLUE color. Editor Decision: Publish subject to technical corrections (03 Feb 2016) by Prof. Harrie‐Jan Hendricks Franssen Comments to the Author: Dear Dr Ke, Your manuscript "Variability in snow cover phenology of China from 1952 to 2010" was again subjected to editor review. Still some changes are needed. Below details are provided. The next version should be ready for publication then. Best regards, Harrie‐Jan Hendricks Franssen Details: Table 1: Units are needed for table. My comment to L243 (old version): You only need to include the units if a number is mentioned, for example 6.2 or 13.1. This should not be done each time the variable is mentioned. Like it is introduced now, it is not appropriate. Replies: We revised it and added unit to the table. L238 (annotated version): Skip "This fact indicates that" Replies: We delete it. L240 (annotated version): fewer than what? Replies: We changed ‘fewer’ as ‘small’. L326: reword "tremendous disaster" in scientific language Replies: We reword it as ‘snowstorm’. L353: "catastrophe": is this the right term or an exaggeration? Replies: We reword it as ‘heavy snow-caused’. L355: "snow disaster": reword. Replies: We changed it to “serious damages”. L370: reword: instead of disaster maybe "extreme event". Replies: We changed ’snow disaster’ as ‘extreme snow events’. Dear Editor: Besides the above edits and revisions, we think it is awkward to add the “per year” to each SCD appeared as we did in last revision. (It was over 150 times). We believe it is better to put it into our Abbreviations, namely, “Snow cover days in a year (SCDs)”.
    [Show full text]