Lumbar Splanchnic Nerves Hypogastric Plexus Spinal Cord L4 L5 Sacral Splanchnic Nerves Vas Deferens Seminal Vesicle S1 Sympathetic Chain Ganglia S2 Prostate

Total Page:16

File Type:pdf, Size:1020Kb

Lumbar Splanchnic Nerves Hypogastric Plexus Spinal Cord L4 L5 Sacral Splanchnic Nerves Vas Deferens Seminal Vesicle S1 Sympathetic Chain Ganglia S2 Prostate Chapter 18 Outline • Comparison of the Somatic and Autonomic Nervous Systems • Overview of the Autonomic Nervous System • Parasympathetic Division • Sympathetic Division • Other Features of the Autonomic Nervous System • CNS Control of Autonomic Function • Development of the Autonomic Nervous System Autonomic Nervous System • The ________ nervous system (ANS) is a complex system of nerves that govern involuntary actions. • The ANS works constantly with the ________ nervous system (SNS) to regulate body organs and maintain normal internal functions. Autonomic Nervous System • The ANS and SNS are part of both the central nervous system and the peripheral nervous system. • The SNS operates under our conscious control. The ANS functions are involuntary and we are usually unaware of them. Comparison of Somatic and Autonomic Nervous Systems Figure 18.1 Comparison of Somatic and Autonomic Nervous Systems • Both the SNS and the ANS use sensory and motor neurons. • In the SNS, somatic motor neurons innervate skeletal muscle fibers, causing conscious voluntary movement. • ANS motor neurons innervate smooth muscle fibers, cardiac muscle fibers, or glands. • ANS motor neurons can either excite or inhibit cells in the viscera. Comparison of Somatic and Autonomic Nervous Systems • SNS—single lower motor neuron axon extends uninterrupted from the spinal cord to one or more muscle fibers • ANS—two-neuron chain innervates muscles and glands Components of the Autonomic Nervous System Figure 18.2 Comparison of Somatic and Autonomic Motor Nervous Systems Two-Neuron Chain in ANS • The first neuron in the ANS pathway is the ________ neuron. Its cell body is in the brain or spinal cord. • A preganglionic axon extends to the second cell body housed within an autonomic ganglion in the peripheral nervous system. • The second neuron in the pathway is called a ________ neuron. • A ________ axon extends from its cell body to effector (target) cells. Two-Neuron Chain in ANS • Neuronal ________—axons from numerous preganglionic cells synapse on a single ganglionic cell • Neuronal ________—axons from one preganglionic cell synapse on numerous ganglionic cells Divisions of Autonomic Nervous System • ________ division—conservation of energy and replenishment of nutrient stores (“rest- and-digest”) • ________ division—preparation of body for emergencies (“fight-or-flight”); increased activity of this division results in increased alertness and metabolic activity Comparison of Parasympathetic and Sympathetic Divisions Figure 18.3 Anatomic Differences Between Parasympathetic and Sympathetic Neurons Figure 18.4 Comparison of Sympathetic and Parasympathetic Divisions Parasympathetic Division • Termed craniosacral division because preganglionic neurons are housed within nuclei in the brainstem and within lateral gray regions of the S2–S4 spinal cord segments • Ganglionic neurons are found in either terminal ganglia close to the target organ, or intramural ganglia in the wall of the target organ Overview of Parasympathetic Pathways Figure 18.5 Four Cranial Nerves of Parasympathetic Division 1. ________ (CN III) 2. ________ (CN VII) 3. ________ (CN IX) 4. ________ (CN X) Oculomotor Nerve (CN III) • Preganglionic cell bodies housed in nuclei in mesencephalon • Postganglionic cell bodies located in ________ ganglion within the orbit • Postganglionic axons project to the ciliary muscle and to the pupillary constrictor muscle of iris Facial Nerve (VII) Two branches of preganglionic axons in the facial nerve (VII) exit the pons: 1. greater petrosal nerve 2. chorda tympani Facial Nerve (VII) Greater petrosal nerve: • terminates at the pterygopalatine ganglion • postganglionic axons project to lacrimal glands and small glands of nasal cavity, oral cavity, and palate Facial Nerve (VII) Chorda tympani: • terminates at the submandibular ganglion – postganglionic axons project to submandibular and sublingual salivary glands in the floor of the mouth Glossopharyngeal Nerve (CN IX) • Preganglionic axons exit brainstem • Preganglionic axons branch and synapse on ganglionic neurons in the otic ganglion • Postganglionic axons cause increase in secretion from parotid salivary glands Vagus Nerve (CN X) • Projects inferiorly through neck to supply innervation to thoracic organs and most abdominal organs • Multiple branches extend to thoracic organs to increase mucous production and decrease diameter of airways, and to decrease heart rate and force of heart contraction Vagus Nerve (CN X) • Vagal trunks pass through diaphragm, associate with the abdominal aorta, and project branches to ganglia located adjacent to or within wall of target organs • Increases smooth muscle motility and secretory activity in digestive tract organs Spinal Sacral Nerves • Preganglionic neuron cell bodies are housed within lateral gray regions of S2–S4 spinal cord segments. • Preganglionic axons branch to form pelvic splanchnic nerves, which contribute to the superior and inferior hypogastric plexus. • Preganglionic fibers project to ganglionic neurons within terminal or intramural ganglia of large intestine, rectum, reproductive organs, urinary bladder, and distal ureter. Parasympathetic Division Outflow Sympathetic Division • Also termed thoracolumbar division because preganglionic neuron cell bodies are housed in ________ horn between first thoracic (T1) and second lumbar (L2) spinal segments • Preganglionic axons travel with somatic motor neuron axons to exit the spinal cord and enter the anterior roots and then the T1– L2 spinal nerves Right and Left Sympathetic Trunks • Sympathetic trunks are located anterior to spinal nerves and immediately lateral to vertebral column. • ________ trunk ganglia (paravertebral or chain ganglia) house sympathetic ganglionic neuron cell bodies. One sympathetic ganglion is approximately associated with each spinal nerve. • Cervical portion of each sympathetic trunk is partitioned into three ganglia: the superior, middle, and inferior ganglia. Overview of Sympathetic Pathways Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Preganglionic Postganglionic Eye Blood vessels and sweat glands of head Salivary glands Blood vessels Heart Cardiac and pulmonary Right Left plexuses Superior cervical ganglion Middle cervical ganglion Inferior cervical ganglion T1 T1 T1 Celiac ganglion Lung Greater thoracic splanchnic nerve T2 T2 Liver and Lesser thoracic splanchnic nerve gallbladder Stomach T3 T3 Spleen T4 T4 Adrenal medulla T5 T5 Superior Kidney mesenteric Ureter (proximal) T6 T6 ganglion Pancreas T7 T7 Large intestine T8 T8 Small intestine T9 T9 T10 T10 T11 T11 Inferior mesenteric Postganglionic fibers Rectum to skin, blood vessels T12 T12 ganglion L1 L1 Ureter (distal) L2 L2 L2 Least thoracic splanchnic nerve L3 Bladder Lumbar splanchnic nerves Hypogastric plexus Spinal cord L4 L5 Sacral splanchnic nerves Vas deferens Seminal vesicle S1 Sympathetic chain ganglia S2 Prostate Testis Ovary Uterus Figure 18.6 Sympathetic Trunk Figure 18.7 Cervical Sympathetic Ganglia • Postganglionic axons from cell bodies in the superior cervical ganglion distribute to structures in the head and neck. Axons innervate sweat glands, smooth muscle in blood vessels, dilator pupillae muscle of the eye, and the superior tarsal muscle of the eye. • Middle and inferior cervical ganglia house neuron cell bodies that extend postganglionic axons to the thoracic viscera. Rami Communicantes • Connect sympathetic trunk to each spinal nerve • Preganglionic sympathetic axons of T1– L2 spinal nerves are carried by ________ rami communicantes (or ________ rami) Rami Communicantes • Postganglionic sympathetic axons are carried from the sympathetic trunk to the spinal nerve by ________ rami communicantes (or ________ rami). Gray rami connect to all spinal nerves including cervical, sacral, and coccygeal spinal nerves. • Preganglionic axons of white rami are myelinated and postganglionic axons of gray rami are unmyelinated. Splanchnic Nerves • Composed of preganglionic sympathetic axons that did not synapse in a sympathetic trunk ganglion • Run anteriorly from sympathetic trunk to most of viscera Splanchnic Nerves • Larger nerves are preganglionic axons that extend from sympathetic trunk ganglia: – Greater thoracic splanchnic nerves: T5–T9 – Lesser thoracic splanchnic nerves: T10–T11 – Least thoracic splanchnic nerves: T12 – Lumbar splanchnic nerves: L1 and L2 – Sacral splanchnic nerves: sacral sympathetic ganglia Prevertebral (Collateral) Ganglia • Splanchnic nerves typically terminate in ________ ganglia. • Ganglia are unpaired and immediately anterior to the vertebral column on the anterolateral surface of the aorta in the abdominopelvic cavity. Prevertebral (Collateral) Ganglia • Ganglia typically cluster around the major abdominal arteries and are named for the arteries. • Sympathetic postganglionic axons extend away from the ganglionic neuron cell bodies in the ganglia and innervate many of the abdominal organs. Prevertebral Ganglia Prevertebral ganglia include: • ________ ganglion • ________ mesenteric ganglion • ________ mesenteric ganglion Celiac Ganglion • Location—adjacent to origin of celiac artery • Preganglion axons—greater thoracic splanchnic nerves (T5–T9 segment of spinal cord) • Postganglionic axons—innervate stomach, spleen, liver, gallbladder, proximal duodenum, part of pancreas Superior Mesenteric Ganglion • Location—adjacent to origin of superior mesenteric artery • Preganglionic axons—lesser and least thoracic splanchnic nerves (T10–T12 segment of spinal
Recommended publications
  • Variations of Thoracic Splanchnic Nerves and Its Clinical Implications
    Int. J. Morphol., 23(3):247-251, 2005. Variations of Thoracic Splanchnic Nerves and its Clinical Implications Variaciones de los Nervios Esplácnicos Torácicos y sus Implicancias Clínicas *Tony George Jacob; ** Surbhi Wadhwa; ***Shipra Paul & ****Srijit Das JACOB, G. T.; WADHWA, S.; PAUL, S. & DAS, S. Variations of thoracic splanchnic nerves and its clinical implications. Int. J. Morphol., 23(3):247-251, 2005. SUMMARY:The present study reports an anomalous branching pattern of the thoracic sympathetic chain. At the level of T3 ganglion, an anomalous branch i.e accessory sympathetic chain (ASC) descended anteromedial to the main sympathetic chain (MSC). The MSC and the ASC communicated with each other at the level of T9, T10 and T11 ganglion, indicating the absence of classical pattern of greater, lesser and least splanchnic nerves on the right side. However, on the left side, the sympathetic chain displayed normal branching pattern. We opine that the ASC may be representing a higher origin of greater splanchnic nerve at the level of T3 ganglion and the branches from MSC at T9, T10 and T11 ganglion may be the lesser and least splanchnic nerves, which further joined the ASC (i.e presumably the greater splanchnic nerve) to form a common trunk. This common trunk pierced the right crus of diaphragm to reach the right suprarenal plexus after giving few branches to the celiac plexus. Awareness and knowledge of such anatomical variants of thoracic sympathetic chain may be helpful to surgeons in avoiding any incomplete denervation or preventing any inadvertent injury during thoracic sympathectomy. KEY WORDS: Splanchnic nerves; Sympathetic chain; Trunk thoracic; Ganglion.
    [Show full text]
  • Anatomical Planes in Rectal Cancer Surgery
    DOI: 10.4274/tjcd.galenos.2019.2019-10-2 Turk J Colorectal Dis 2019;29:165-170 REVIEW Anatomical Planes in Rectal Cancer Surgery Rektum Kanser Cerrahisinde Anatomik Planlar Halil İbrahim Açar, Mehmet Ayhan Kuzu Ankara University Faculty of Medicine, Department of General Surgery, Ankara, Turkey ABSTRACT This review outlines important anatomical landmarks not only for rectal cancer surgery but also for pelvic exentration. Keywords: Anorectal anatomy, pelvic anatomy, surgical anatomy of rectum ÖZ Pelvis anatomisini derleme halinde özetleyen bu makale rektum kanser cerrahisi ve pelvik ezantrasyon için önemli topografik noktaları gözden geçirmektedir. Anahtar Kelimeler: Anorektal anatomi, pelvik anatomi, rektumun cerrahi anatomisi Introduction Surgical Anatomy of the Rectum The rectum extends from the promontory to the anal canal Pelvic Anatomy and is approximately 12-15 cm long. It fills the sacral It is essential to know the pelvic anatomy because of the concavity and ends with an anal canal 2-3 cm anteroinferior intestinal and urogenital complications that may develop to the tip of the coccyx. The rectum contains three folds in after the surgical procedures applied to the pelvic region. the coronal plane laterally. The upper and lower are convex The pelvis, encircled by bone tissue, is surrounded by the to the right, and the middle is convex to the left. The middle main vessels, ureters, and autonomic nerves. Success in the fold is aligned with the peritoneal reflection. Intraluminal surgical treatment of pelvic organs is only possible with a projections of the lower boundaries of these folds are known as Houston’s valves. Unlike the sigmoid colon, taenia, good knowledge of the embryological development of the epiploic appendices, and haustra are absent in the rectum.
    [Show full text]
  • Vagus Nerve (CN X) That Supply All of the Thoracic and Abdominal Viscera, Except the Descending and Sigmoid Colons and Other Pelvic Viscera
    DR. HAYTHEM ALI ALSAYIGH Assistant prof. BOARD CLINICAL SURGICAL ANATOMY F.I.M.B.S.-MB.CH,B COLLEGE OF MEDICINE –UNIVERSITY OF BABYLON III. Autonomic Nervous System in the Thorax Is composed of motor, or efferent, nerves through which cardiac muscle, smooth muscle , and glands are innervated. Involves two neurons: preganglionic and postganglionic. It may include general visceral afferent (GVA) fibers because they run along with general visceral efferent (GVE) fibers . Consists of sympathetic (or thoracolumbar outflow) and parasympathetic (or craniosacral outflow)systems. Consists of cholinergic fibers (sympathetic preganglionic, parasympathetic preganglionic, and postganglionic) that use acetylcholine as the neurotransmitter and adrenergic fibers (sympathetic postganglionic) that use norepinephrine as the neurotransmitter (except those to sweat glands [cholinergic]). A. Sympathetic nervous system Enables the body to cope with crises or emergencies and thus often is referred to as the fight-or-flight division. Contains preganglionic cell bodies that are located in the lateral horn or intermediolateral cell column of the spinal cord segments between T1 and L2. Has preganglionic fibers that pass through the white rami communicantes and enter the sympathetic chain ganglion, where they synapse. Has postganglionic fibers that join each spinal nerve by way of the gray rami communicantes and supply the blood vessels, hair follicles (arrector pili muscles), and sweat glands. Increases the heart rate , dilates the bronchial lumen , and dilates the coronary arteries. 1. Sympathetic trunk Is composed primarily of ascending and descending preganglionic sympathetic fibers and visceral afferent fibers, and contains the cell bodies of the postganglionic sympathetic (GVE) fibers. Descends in front of the neck of the ribs and the posterior intercostal vessels.
    [Show full text]
  • The Diaphragm
    Thomas Jefferson University Jefferson Digital Commons Regional anatomy McClellan, George 1896 Vol. 1 Jefferson Medical Books and Notebooks November 2009 The Diaphragm Follow this and additional works at: https://jdc.jefferson.edu/regional_anatomy Part of the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ouy Recommended Citation "The Diaphragm" (2009). Regional anatomy McClellan, George 1896 Vol. 1. Paper 13. https://jdc.jefferson.edu/regional_anatomy/13 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Regional anatomy McClellan, George 1896 Vol. 1 by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. 320 THE DIAPHRAGJ1I. The nerves from the four upp e1' ganglia are quite small, and pass inward to join the cardiac and posterior pulmonary plexuses. The nerves from the six lower ganglia constitute the greater, the lesser, and the smaller splanchnic nerves. The great splanchnic nerue is composed of the most numerous filaments from the fifth, sixth, seventh, eighth, ninth, and tenth ganglia, which combine into a single trunk, and, passing through the crus of the diaphragm on the corresponding side, join the solar, renal, and supra-renal plexuses.
    [Show full text]
  • The Neuroanatomy of Female Pelvic Pain
    Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis.
    [Show full text]
  • The Sacral Parasympathetic Innervation of the Colon
    THE SACRAL PARASYMPATHETIC INNERVATION OF THE COLON RUSSELL T. WOODBURNE Department of Anatomy, University of Michigan Hedical School, Ann Arbofi TWO FIGURES Autonomic nerves distribute by a variety of methods. They are recognized as components of all spinal and some cranial nerves, but they also have a strong tendency to exhibit a hitch-hiker relationship to arteries and to other nerves. The perivascular plexuses of the head and neck, and of the thorax and abdomen, are especially typical of peripheral sympa- thetic distribution. In the parasympathetic division, pre- ganglion& arising in the third, seventh, and ninth cranial nerves utilize the branches of the trigeminal nerve for pas- sage to the structure innervated. The vagus nerve is a main parasympathetic route to structures of the neck and chest and its terminal fibers end in the abdomen by mingling in the celiac plexus with sympathetic postganglionic fibers. In- testinal autonomies are perivascular for both sympathetic and parasympathetic divisions. St the brim of the pelvis the perivascular plexus of the aorta forms the hypogastric nerves which descend across the sacral promontory and dis- tribute to the pelvic viscera without following their blood vessels, With these predominantly sympathetic nerves, para- sympathetic fibers pass to the viscera of the pelvis and peri- neum, Anatomical description has recognized that the parasympa- thetic innervation of the descending and sigmoid portions of the large intestine is provided by components of the sacral parasympathetic roots from sacral nerves two, three, and four, which ascend from the pelvis to reach the colon. Implicit 67 68 RUSSELL T. WOODBURNE in most descriptions is an assumption that fibers of this char- acter ascend through the pelvic plexuses, mingle with the nerves of the abdominal portion of the hypogastric plexus, and distribute by means of the perivascular nerve plexuses along the inferior mesenteric artery and its branches.
    [Show full text]
  • Anatomy of the Anterior Vagus Nerve: an Anatomic Description and Its Application in Surgery Leopoldo M
    ogy: iol Cu ys r h re P n t & R y e s Anatomy & Physiology: Current m e Baccaro et al., Anat Physiol 2013, 3:2 o a t r a c n h DOI: 10.4172/2161-0940.1000121 A Research ISSN: 2161-0940 Research Article Open Access Anatomy of the Anterior Vagus Nerve: An Anatomic Description and its Application in Surgery Leopoldo M. Baccaro*, Cristian N. Lucas, Marcos R. Zandomeni, María V. Selvino and Eduardo F. Albanese Universidad del Salvador, School of Medicine, Tucumán 1845/49, Buenos Aires, Argentina Abstract Objective: Anatomic study of human corpses in order to obtain specific measurements of the anterior vagus nerve for its application in the surgical field. Methods: After analyzing the literature, dissections were performed on 15 human corpses, provided by the Universidad del Salvador. Descriptions were made of our observations. Results: The most frequently found structure in esophageal hiatus was a plexus. The cardial branch was present in 100% of the dissections. There were a constant number of gastric branches, between five and seven. The hepatic branch originated from the plexus in the majority of the cadavers. The distance between first and last branch points was variable. No relationship between the hepatic branch and left hepatic artery was observed. Conclusions: The structure most commonly found in the esophageal hiatus was the terminal plexus of the anterior vagus nerve. The hepatic branch most frequently originated directly from this plexus, although in a considerable number of cases its origin was found either proximal or distal to this structure. We could not confirm the literature stating the relationship between the hepatic branch and the left hepatic artery through our studies.
    [Show full text]
  • Annotation SURGICAL TREATMENT of ASTHMA
    Postgrad Med J: first published as 10.1136/pgmj.25.283.193 on 1 May 1949. Downloaded from '93 Annotation tissue pouting into the bronchial lumen as a result of ulceration of tuberculous hilar glands and perhaps associated with a bronchial stricture may SURGICAL TREATMENT give rise to difficulty. The diagnosis in these cases is readily established by bronchoscopy. OF ASTHMA Severe degrees of emphysema. and bullous cysts of the lung present greater difficulty. The purpose ofthis communication is to attempt Emphysema of greater or less extent is indeed a to analyse as simply as possible the present position common result of asthma and may develop at an of surgical procedures in relation to asthma. The early date, but it may also occur without true approach to the subject must necessarily be asthma and operation will afford no relief. As to guarded for there is as yet insufficient evidence giant bullous cysts, they are, in the majority of on which to base firm opinions. Medical feeling instances, unilateral and although they may appear has so far been biased against surgery because to occupy the whole of one side of the chest, they surgeons are still unable to state what are the usually arise from only one lobe and the rest of the criteria for operation and, if surgery is agreed upon, compressed lung tissue is visible. what operation is. to be done. How shall we tell which asthmatic will respond favourably and Physiological Considerations (Miscall, which will not? Gay and Rienhoff's (1938) method 1943) of choosing only cases which had failed to respond In normal respiration, active inspiration and to any other treatment and who were consequently passive expiration suffice.
    [Show full text]
  • Radiofrequency Ablation and Alcohol Neurolysis of the Splanchnic Nerves for a Patient with Abdominal Pain from Pancreatic Cancer
    Open Access Case Report DOI: 10.7759/cureus.10758 Radiofrequency Ablation and Alcohol Neurolysis of the Splanchnic Nerves for a Patient With Abdominal Pain From Pancreatic Cancer Rana AL-Jumah 1 , Ivan Urits 2 , Omar Viswanath 3 , Alan D. Kaye 4 , Jamal Hasoon 2 1. Department of Anesthesia, Baylor College of Medicine, Houston, USA 2. Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center – Harvard Medical School, Boston, USA 3. Pain Management, Valley Pain Consultants, Envision Physician Services, Phoenix, USA 4. Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA Corresponding author: Jamal Hasoon, [email protected] Abstract Abdominal pain related to gastrointestinal malignancy can be notoriously difficult to manage and can lead to significant morbidity and suffering. The blockade of the celiac plexus has traditionally been performed for alleviating abdominal pain related to malignancy. Visceral structures that are innervated by these nerves include the pancreas, liver, gallbladder, mesentery, omentum, and the gastrointestinal tract from the stomach to the transverse colon. Alternatively, this pain can be treated by disrupting visceral nociceptive signals at the splanchnic nerves. In this report, we describe our experience of treating a 50-year-old male patient suffering from severe abdominal pain related to pancreatic cancer with multiple liver metastases. The patient failed medication management and had an international normalized ratio of 1.6, which was a concern for performing a celiac plexus block given the proximity of major vascular structures. The patient instead underwent radiofrequency ablation (RFA) as well as alcohol neurolysis of the bilateral splanchnic nerves and obtained significant relief from the procedure.
    [Show full text]
  • The Axatomy of the Autonomic Nervous System in the Dog1
    THE AXATOMY OF THE AUTONOMIC NERVOUS SYSTEM IN THE DOG1 NICHOLAS JAMES AIIZERES Ucpartnitiit of Aiintoiiry, Cnzvemtty of Xtclizgaii Scliool of ;2/cdicmc. Ann Arbor, Mtclatgan ELEVEN FIGURES INTRODUCTTOX I<iiowledgc clerivccl from cmprimeiits on tlie clog has not infrequently been applied to man without considering dif- fcmnccs in aiiatoniy. This is c~spcciallytrue of the autonomic nervous systeni, oiily parts of which have b:mi described in the adult clog. The cardiac ncli'vcs \\'ere described by Sc1iuran.- Iew ( '27) ant1 Soniclez ( '39), the gcw~alplan of the abrloniirial ancl sacral regions by Trumble ( '34), tlic lunibosacral trunk by Alehler, Fisclier and Alexander ( '52), the vagi lsy Hilsa- beck aid Hill ( '50) and BIcC'rca and D'hrcy ( '%), ant1 the urogenital plexuses by Schal~adasch( '26) aiicl Ncdowar ( '2.3. The present study was undertaken to fill gaps in previous clescriptions ancl to present an over-all view of the autonomic iierrous system in the (log, esclutliiig the cephalic region. In the pi-c~seiitiiivcstigation the XI< terminology has been used iiistpad of the usual RNA familiar in human anatomy loccause tlic study was based on the clog. Sincc a dog is a pronograde niamnial the terms cranial aiid caudal seeni nior(t appropriat r tliaii the ESA terms superior and inferior. Tiiis paper is n condensation of a clissei t:ition snbniittctl in paytial fulfillmc.~it of tlrc rcqiiireiiieuts for the drgrce of Doctor of Pliilosopliy in the University of Rlicliigaii. I wish to tlimik Dr. It. T. Wootlhuine for Ills interest and aclriec. For the supply of nlatciial tlie author vihlies to e\-pr('\s his appreciatioir to mcmbc~is of the 1)ep:irtiiiciits of P1iTsiolog.y :iiiil PIiar~u:~cologrof tlic Viiirersity of hliclrigan.
    [Show full text]
  • Chapter 15: the Autonomic Nervous System
    Chapter 15: The Autonomic Nervous System Copyright 2009, John Wiley & Sons, Inc. Comparison of Somatic and Autonomic Nervous Systems Copyright 2009, John Wiley & Sons, Inc. Comparison of Somatic and Autonomic Nervous Systems Copyright 2009, John Wiley & Sons, Inc. Anatomy of Autonomic Motor Pathways Preganglionic neuron Postganglionic neuron Two divisions: Sympathetic Parasympathetic Copyright 2009, John Wiley & Sons, Inc. Structure of the Sympathetic Division Copyright 2009, John Wiley & Sons, Inc. Sympathetic Division Thoracolumbar division- Preganglionic neurons originate from the thoracic and lumbar levels of the spinal cord (T1-L2). Sympathetic ganglia: Sympathetic trunk (vertebral chain) ganglia. Prevertebral (collateral) ganglia: celiac, superior mesenteric, inferior mesenteric, aorticorenal and renal. Copyright 2009, John Wiley & Sons, Inc. Postganglionic neurons in the Sympathetic Division Copyright 2009, John Wiley & Sons, Inc. Postganglionic Neurons in the Sympathetic Division An axon may synapse with postganglionic neurons in the ganglion it first reaches or Sympathetic chains or An axon may continue, without synapsing, through the sympathetic trunk ganglion to end at a prevertebral ganglion and synapse with postganglionic neurons there or An axon may pass through the sympathetic trunk ganglion and a prevertebral ganglion and then to the adrenal medulla. Copyright 2009, John Wiley & Sons, Inc. Sympathetic Division A single sympathetic preganglionic fiber has many axon collaterals and may synapse with 20 or more postganglionic neurons. The postganglionic axons typically terminate in several visceral effectors and therefore the effects of sympathetic stimulation are more widespread than the effects of parasympathetic stimulation. Copyright 2009, John Wiley & Sons, Inc. Structure of the Parasympathetic Division Copyright 2009, John Wiley & Sons, Inc. Parasympathetic Division Craniosacral division: Preganglionic neurons originate from the cranial nerves III, VII, IX and X and sacral spinal nerves S2-S4.
    [Show full text]
  • Anatomy of Esophagus Anatomy of Esophagus
    DOI: 10.5772/intechopen.69583 Provisional chapter Chapter 1 Anatomy of Esophagus Anatomy of Esophagus Murat Ferhat Ferhatoglu and Taner Kıvılcım Murat Ferhat Ferhatoglu and Taner Kıvılcım Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.69583 Abstract Anatomy knowledge is the basic stone of healing diseases. Arteries, veins, wall structure, nerves, narrowing, curves, relations with other organs are very important to understand eso- phagial diseases. In this chapter we aimed to explain anatomical fundementals of oesophagus. Keywords: anatomy, esophagus, parts of esophagus, blood supply of esophagus, innervation of esophagus 1. Introduction Esophagus is a muscular tube-like organ that originates from endodermal primitive gut, 25–28 cm long, approximately 2 cm in diameter, located between lower border of laryngeal part of pharynx (Figure 1) and cardia of stomach. Start and end points of esophagus correspond to 6th cervi- cal vertebra and 11th thoracic vertebra topographically, and the gastroesophageal junction cor- responds to xiphoid process of sternum. Five cm of esophagus is in the neck, and it descends over superior mediastinum and posterior mediastinum approximately 17–18 cm, continues for 1–1.5 cm in diaphragm, ending with 2–3 cm of esophagus in abdomen (Figure 2) [1, 2]. Sex, age, physi- cal condition, and gender affect the length of esophagus. A newborn’s esophagus is 18 cm long, and it begins and ends one or two vertebra higher than in adult. Esophagus lengthens to 22 cm long by age 3 years and to 27 cm by age 10 years [3, 4].
    [Show full text]