Room-Temperature Superfluidity in a Polariton Condensate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2 a Primer on Polymer Colloids: Structure, Synthesis and Colloidal Stability
A. Al Shboul, F. Pierre, and J. P. Claverie 2 A primer on polymer colloids: structure, synthesis and colloidal stability 2.1 Introduction A colloid is a dispersion of very fine objects in a fluid [1]. These objects can be solids, liquids or gas, and the corresponding colloidal dispersion is then referred to as sus- pension, emulsion or foam. Colloids possess unique characteristics. For example, as their size is smaller than the wavelength of light, they scatter light. They also offer a large interfacial surface area, meaning that interfacial phenomena are of paramount importance in these dispersions. The weight of each dispersed particle being small, gravity and buoyancy forces are not sufficient to counteract the thermal random mo- tion of the particle, named Brownian motion (in tribute to the 19th century botanist Robert Brown who first characterized it). The particles do not remain in a dispersed state indefinitely: they will sooner or later aggregate (phase separation). Thus, thecol- loidal state is in general metastable and colloidal stability is one of the key features to take into account when working with colloids. Among all colloids, the polymer colloid family is one of the most widely inves- tigated [2]. Polymer colloids are used for a large number of applications, ranging from coatings, adhesives, inks, impact modifiers, drug-delivery vehicles, etc. The particles range in size from about 10 nm to 1 000 nm (1 μm) in diameter. They are usually spherical, but numerous other shapes have been observed. Polymer colloids are not uncommon in nature. For example, natural rubber latex, the secretion of the Hevea brasiliensis tree, is in fact a dispersion of polyisoprene nanoparticles in wa- ter. -
Entropy Driven Phase Transition in Polymer Gels: Mean Field Theory
entropy Article Entropy Driven Phase Transition in Polymer Gels: Mean Field Theory Miron Kaufman Physics Department, Cleveland State University, Cleveland, OH 44115, USA; [email protected] Received: 16 April 2018; Accepted: 27 June 2018; Published: 30 June 2018 Abstract: We present a mean field model of a gel consisting of P polymers, each of length L and Nz polyfunctional monomers. Each polyfunctional monomer forms z covalent bonds with the 2P bifunctional monomers at the ends of the linear polymers. We find that the entropy dependence on the number of polyfunctional monomers exhibits an abrupt change at Nz = 2P/z due to the saturation of possible crosslinks. This non-analytical dependence of entropy on the number of polyfunctionals generates a first-order phase transition between two gel phases: one poor and the other rich in poly-functional molecules. Keywords: crosslinking entropy; saturation; discontinuous phase transition 1. Motivation A polymer gel like polyacrylamide changes the volumes by a large factor of ~1000 when a small quantity of solvent like acetone is added to the solution or when the temperature is varied slightly. Central to the understanding of this phase transition are the covalent crosslinks [1–5] between the linear chains. Polymer chains, such as in hydroxypropylcellulose (HPC) immersed in a water solution, form hydrogen bonds with the water. As the temperature, the pH, or some other external condition is varied, there is a change in the strength of the hydrogen bonds that results in the formation or destruction of aggregates of crosslinked polymer chains. Light scattering experiments [6,7] are used to study the influence of the amount of crosslinkers on the properties of the gel phases. -
Soft Condensed Matter Physics Programme Course 6 Credits Mjuka Material TFYA37 Valid From: 2018 Spring Semester
1(9) Soft Condensed Matter Physics Programme course 6 credits Mjuka material TFYA37 Valid from: 2018 Spring semester Determined by Board of Studies for Electrical Engineering, Physics and Mathematics Date determined LINKÖPING UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING LINKÖPING UNIVERSITY SOFT CONDENSED MATTER PHYSICS FACULTY OF SCIENCE AND ENGINEERING 2(9) Main field of study Applied Physics, Physics Course level Second cycle Advancement level A1X Course offered for Biomedical Engineering, M Sc in Engineering Engineering Biology, M Sc in Engineering Entry requirements Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding. Prerequisites Mandatory courses in mathematics and physics for the Y-program or equal. Intended learning outcomes The course will ive the student knowledge of the statistical physics of polymers, the chemical, geometrical and electronic structure of polymers as well as the structure, dynamics and processing of polymer solids. We will discuss condensed matter in the form of colloids, amphiphiles, liquid crystals, molecular crystals and biological matter. After the course, the student should be able to describe the geometry of polymer chains and their dynamics, and the mathematical description of these phenomena utilize thermodynamical analysis of phase transitions in polymers and polymer blends LINKÖPING UNIVERSITY SOFT CONDENSED MATTER PHYSICS FACULTY OF SCIENCE AND ENGINEERING 3(9) describe micro and nanostructure of polymer solutions and polymer blends describe amphiphile materials, colloids, foams and gels, liquid crystals Course content Polymers: terminology, chemical structures and polymerization, solid state structures, polymers in solution, colligative properties. Statistical physics of polymer chains: random coils, entropy measures, rubber physics. -
Demonstration of a Persistent Current in Superfluid Atomic Gas
Demonstration of a persistent current in superfluid atomic gas One of the most remarkable properties of macroscopic quantum systems is the phenomenon of persistent flow. Current in a loop of superconducting wire will flow essentially forever. In a neutral superfluid, like liquid helium below the lambda point, persistent flow is observed as frictionless circulation in a hollow toroidal container. A Bose-Einstein condensate (BEC) of an atomic gas also exhibits superfluid behavior. While a number of experiments have confirmed superfluidity in an atomic gas BEC, persistent flow, which is regarded as the “gold standard” of superfluidity, had not been observed. The main reason for this is that persistent flow is most easily observed in a topology such as a ring or toroid, while past BEC experiments were primarily performed in spheroidal traps. Using a combination of magnetic and optical fields, we were able to create an atomic BEC in a toriodal trap, with the condensate filling the entire ring. Once the BEC was formed in the toroidal trap, we coherently transferred orbital angular momentum of light to the atoms (using a technique we had previously demonstrated) to get them to circulate in the trap. We observed the flow of atoms to persist for a time more than twenty times what was observed for the atoms confined in a spheroidal trap. The flow was observed to persist even when there was a large (80%) thermal fraction present in the toroidal trap. These experiments open the possibility of investigations of the fundamental role of flow in superfluidity and of realizing the atomic equivalent of superconducting circuits and devices such as SQUIDs. -
Shape Memory and Actuation Behavior of Semicrystalline Polymer Networks
Dipl.-Phys. Martin Bothe Shape Memory and Actuation Behavior of Semicrystalline Polymer Networks BAM-Dissertationsreihe • Band 121 Berlin 2014 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Shape Memory and Actuation Behavior of Semicrystalline Polymer Networks 2014 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2014 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Referat Z.8 ISSN 1613-4249 ISBN 978-3-9816668-1-6 Shape Memory and Actuation Behavior of Semicrystalline Polymer Networks vorgelegt von Dipl.-Phys. Martin Bothe aus Tubingen¨ von der Fakult¨at II – Mathematik und Naturwissenschaften der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Matthias Bickermann Gutachter: Prof. Dr. rer. nat. Michael Gradzielski Gutachter: Prof. Dr. rer. nat. Michael Maskos Tag der wissenschaftlichen Aussprache: 16.07.2014 Berlin 2014 D 83 Für meine Familie Abstract Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a ‘programming’ procedure fixes a deformation, yielding a stable tem- porary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free condi- tions. -
Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL
United States Office of Pollution EPA 744-B-97-001 Environmental Protection Prevention and Toxics June 1997 Agency (7406) Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL 5/22/97 A technical manual to accompany, but not supersede the "Premanufacture Notification Exemptions; Revisions of Exemptions for Polymers; Final Rule" found at 40 CFR Part 723, (60) FR 16316-16336, published Wednesday, March 29, 1995 Environmental Protection Agency Office of Pollution Prevention and Toxics 401 M St., SW., Washington, DC 20460-0001 Copies of this document are available through the TSCA Assistance Information Service at (202) 554-1404 or by faxing requests to (202) 554-5603. TABLE OF CONTENTS LIST OF EQUATIONS............................ ii LIST OF FIGURES............................. ii LIST OF TABLES ............................. ii 1. INTRODUCTION ............................ 1 2. HISTORY............................... 2 3. DEFINITIONS............................. 3 4. ELIGIBILITY REQUIREMENTS ...................... 4 4.1. MEETING THE DEFINITION OF A POLYMER AT 40 CFR §723.250(b)... 5 4.2. SUBSTANCES EXCLUDED FROM THE EXEMPTION AT 40 CFR §723.250(d) . 7 4.2.1. EXCLUSIONS FOR CATIONIC AND POTENTIALLY CATIONIC POLYMERS ....................... 8 4.2.1.1. CATIONIC POLYMERS NOT EXCLUDED FROM EXEMPTION 8 4.2.2. EXCLUSIONS FOR ELEMENTAL CRITERIA........... 9 4.2.3. EXCLUSIONS FOR DEGRADABLE OR UNSTABLE POLYMERS .... 9 4.2.4. EXCLUSIONS BY REACTANTS................ 9 4.2.5. EXCLUSIONS FOR WATER-ABSORBING POLYMERS........ 10 4.3. CATEGORIES WHICH ARE NO LONGER EXCLUDED FROM EXEMPTION .... 10 4.4. MEETING EXEMPTION CRITERIA AT 40 CFR §723.250(e) ....... 10 4.4.1. THE (e)(1) EXEMPTION CRITERIA............. 10 4.4.1.1. LOW-CONCERN FUNCTIONAL GROUPS AND THE (e)(1) EXEMPTION................. -
Contents 1 Classification of Phase Transitions
PHY304 - Statistical Mechanics Spring Semester 2021 Dr. Anosh Joseph, IISER Mohali LECTURE 35 Monday, April 5, 2021 (Note: This is an online lecture due to COVID-19 interruption.) Contents 1 Classification of Phase Transitions 1 1.1 Order Parameter . .2 2 Critical Exponents 5 1 Classification of Phase Transitions The physics of phase transitions is a young research field of statistical physics. Let us summarize the knowledge we gained from thermodynamics regarding phases. The Gibbs’ phase rule is F = K + 2 − P; (1) with F denoting the number of intensive variables, K the number of particle species (chemical components), and P the number of phases. Consider a closed pot containing a vapor. With K = 1 we need 3 (= K + 2) extensive variables say, S; V; N for a complete description of the system. One of these say, V determines only size of the system. The intensive properties are completely described by F = 1 + 2 − 1 = 2 (2) intensive variables. For instance, by pressure and temperature. (We could also choose temperature and chemical potential.) The third intensive variable is given by the Gibbs’-Duhem relation X S dT − V dp + Ni dµi = 0: (3) i This relation tells us that the intensive variables PHY304 - Statistical Mechanics Spring Semester 2021 T; p; µ1; ··· ; µK , which are conjugate to the extensive variables S; V; N1; ··· ;NK are not at all independent of each other. In the above relation S; V; N1; ··· ;NK are now functions of the variables T; p; µ1; ··· ; µK , and the Gibbs’-Duhem relation provides the possibility to eliminate one of these variables. -
As a Solid Polymer Electrolyte for Lithium Ion Batteries
UPTEC K 16013 Examensarbete 30 hp Juli 2016 A study of poly(vinyl alcohol) as a solid polymer electrolyte for lithium ion batteries Gustav Ek Abstract A study of poly(vinyl alcohol) as a solid polymer electrolyte for lithium ion batteries Gustav Ek Teknisk- naturvetenskaplig fakultet UTH-enheten The use of solid polymer electrolytes in lithium-ion batteries has the advantage in terms of safety and processability, however they often lack in terms of performance. Besöksadress: This is of major concern in applications where high current densities or rapidly Ångströmlaboratoriet Lägerhyddsvägen 1 changing currents are important. Such applications include electrical vehicles and Hus 4, Plan 0 energy storage of the electrical grid to accommodate fluctuations when using renewable energy sources such as wind and solar. Postadress: Box 536 751 21 Uppsala In this study, the use of commercial poly(vinyl alcohol) (PVA) as a solid polymer electrolyte for use in lithium-ion batteries has been evaluated. Films were prepared Telefon: using various lithium salts such as lithium bis(trifluoromethane)sulfonimide (LiTFSI) 018 – 471 30 03 and casting techniques. Solvent free films were produced by substituting the solvent Telefax: Dimethyl sulfoxide (DMSO) with water and rigouros drying or by employing a 018 – 471 30 00 hot-pressing technique. The best performing system studied was PVA-LiTFSI-DMSO, which reached ionic conductivities of 4.5E-5 S/cm at room temperature and 0.45 Hemsida: mS/cm at 60 °C. The solvent free films showed a drop of ionic conductivity by http://www.teknat.uu.se/student roughly one order of magnitude compared to films with residual DMSO present. -
Polymer Colloid Science
Polymer Colloid Science Jung-Hyun Kim Ph. D. Nanosphere Process & Technology Lab. Department of Chemical Engineering, Yonsei University National Research Laboratory Project the financial support of the Korea Institute of S&T Evaluation and Planning (KISTEP) made in the program year of 1999 기능성 초미립자 공정연구실 Colloidal Aspects 기능성 초미립자 공정연구실 ♣ What is a polymer colloids ? . Small polymer particles suspended in a continuous media (usually water) . EXAMPLES - Latex paints - Natural plant fluids such as natural rubber latex - Water-based adhesives - Non-aqueous dispersions . COLLOIDS - The world of forgotten dimensions - Larger than molecules but too small to be seen in an optical microscope 기능성 초미립자 공정연구실 ♣ What does the term “stability/coagulation imply? . There is no change in the number of particles with time. A system is said to be colloidally unstable if collisions lead to the formation of aggregates; such a process is called coagulation or flocculation. ♣ Two ways to prevent particles from forming aggregates with one another during their colliding 1) Electrostatic stabilization by charged group on the particle surface - Origin of the charged group - initiator fragment (COOH, OSO3 , NH4, OH, etc) ionic surfactant (cationic or anionic) ionic co-monomer (AA, MAA, etc) 2) Steric stabilization by an adsorbed layer of some substance 3) Solvation stabilization 기능성 초미립자 공정연구실 기능성 초미립자 공정연구실 Stabilization Mechanism Electrostatic stabilization - Electrostatic stabilization Balancing the charge on the particle surface by the charges on small ions -
Polymer Basics
POLYMER BASICS Many common items can be used to demonstrate the structure of a polymer. 1. Paper clips hooked together in a chain can be used to simulate the way that monomers link up to form very long chains. You can even simulate the process of polymerizing by placing a few "PC" (paper clip) monomers into a container (with a screw-top lid), in which you have already placed a large number of clips hooked together to make a chain. You can simulate the addition of energy, which is necessary to begin the polymerization process, by shaking the closed container. Then you can remove the entire polymer (paper clip) chain; however, it is probable that, when you pull out the chain, you will have short branches of clips extending off the main, long chain of paper clips, and some unlinked (monomer) molecules in the bottom of the reaction vessel. In real polymers, the length of the entire chain helps to determine the polymer's properties. The important points in this simulation are: a. A polymer chain is made up of a repeating monomer unit (the paper clip). b. The number of monomer paper clips in this chain is far smaller than the number of monomer units in a useful polymer. c. Producing a polymer doesn't always give a single long chain, but it produces chains with side branches, and frequently leaves some monomer molecules unreacted. 2. Strands of beads (costume jewelry) can also represent a chain of monomers. This long strand will usually emerge from a container as a single chain, with few entanglements and side-branches. -
Phase Transition a Phase Transition Is the Alteration in State of Matter Among the Four Basic Recognized Aggregative States:Solid, Liquid, Gaseous and Plasma
Phase transition A phase transition is the alteration in state of matter among the four basic recognized aggregative states:solid, liquid, gaseous and plasma. In some cases two or more states of matter can co-exist in equilibrium under a given set of temperature and pressure conditions, as well as external force fields (electromagnetic, gravitational, acoustic). Introduction Matter is known four aggregative states: solid, liquid, and gaseous and plasma, which are sharply different in their properties and characteristics. Physicists have agreed to refer to a both physically and chemically homogeneous finite body as a phase. Or, using Gybbs’s definition, one can call a homogeneous part of heterogeneous system: a phase. The reason behind the existence of different phases lies in the balance between the kinetic (heat) energy of the molecules and their energy of interaction. Simplified, the mechanism of phase transitions can be described as follows. When heating a solid body, the kinetic energy of the molecules grows, distance between them increases, and in accordance with the Coulomb law the interaction between them weakens. When the temperature reaches a certain point for the given substance (mineral, mixture, or system) critical value, melting takes place. A new phase, liquid, is formed, and a phase transition takes place. When further heating the liquid thus formed to the next critical temperature the liquid (melt) changes to gas; and so on. All said phase transitions are reversible; that is, with the temperature being lowered, the system would repeat the complete transition from one state to another in reverse order. The important thing is the possibility of co- existence of phases and their reciprocal transition at any temperature. -
PIMC & Superfluidity D.M. Ceperley
Path Integral Methods for Continuum Quantum Systems D. Ceperley University of Illinois Urbana-Champaign • Imaginary time path integrals • Path integrals for bosons • Restricted path integral method for fermions • Exchange of localized particles • Examples: – Liquid 4He and 3He: superfluids – Solid 4He and 3He : supersolid & magnetic order Liquid helium the prototypic quantum fluid • A helium atom is an elementary particle. A weakly interacting hard sphere. First electronic excitation is 230,000 K. • Interatomic potential is known more accurately than any other atom because electronic excitations are so high. • Two isotopes: • 3He (fermion: antisymmetric trial function, spin 1/2) • 4He (boson: symmetric trial function, spin zero) Helium phase diagram • Because interaction is so weak helium does not crystallize at low temperatures. Quantum exchange effects are important • Both isotopes are quantum fluids and become superfluids below a critical temperature. • One of the goals of computer simulation is to understand these 2 2 states, and see how they differ from H = − ∇ +V (R) classical liquids starting from non- ∑ i i 2m relativistic Hamiltonian: i 2 λ ≡ 2mi Imaginary Time Path Integrals The thermal density matrix ˆ HEφφααα= • Find exact many-body 2 −β E eigenstates of H. (;RRe ) ()α β = 1/kT ρβ= ∑ φα • Probability of α occupying state α is ˆ ˆ e-β H operator notation exp(-βEα) ρβ = off-diagonal density matrix: • All equilibrium * E properties can be ρβφφ(,RR ';)= (')() R Re−β α calculated in terms of ∑ αα thermal o-d density α matrix ρβ(RR , '; )≥ 0 (without statistics) • Convolution theorem relates high ρββ(,RR121 ;+= 2 ) temperature to lower = dR' ( R , R '; ) (RR', ; ) temperature.