Foundations in Pharmacokinetics

Total Page:16

File Type:pdf, Size:1020Kb

Foundations in Pharmacokinetics Foundations in Pharmacokinetics Adam M. Persky, PhD All Rights Reserved, Copyright 2015 © Adam M. Persky 1 About This Book This book was written to acclimatize the pharmacy student or other healthcare student or professional to the discipline of pharmacokinetics. Typically, the pharmacokinetics curriculum in most schools of pharmacy is less well “appreciated” by students compared to other classes. This “lack of appreciation” or disinterest is likely attributable, in part, to the mathematical nature of the subject. Another contributing factor may be the fact that memorization-based learning strategies do not fare well in pharmacokinetics. As in many other disciplines, memorization of some basic principles is necessary; however, the ability to appropriately apply these basics under a variety of contexts is paramount to success. Thus, application of critical thinking and reasoning skills is the best method to learn pharmacokinetics. The goal of this book is to assist the reader in developing an appropriate level of comfort with relevant mathematical formulae and techniques in order to provide a foundation for progression to more advanced therapeutic concepts. How to learn pharmacokinetics using this book A complete mastery of the field of pharmacokinetics cannot be accom- plished in one semester, one year, or even one lifetime. This book is intended to supplement the concepts discussed in the classroom by both providing an overview of the essential ideas and offering general guidance for dealing with clinical situations you may encounter. Simply reading about pharmacokinetics will not be sufficient to develop an un- derstanding of the topic. This book is only one component of your phar- macokinetics education. You must spend time thinking about concepts discussed in the classroom and in this book. Ask questions of yourself, your classmates, and your instructors. Identify areas in which you have difficulty, and ask questions (preferably before exams). Merely talking about pharmacokinetics is beneficial, thus you may also benefit from forming discussion groups. Since not all students learn effectively by the In the margin same mechanisms, one aim of this book is to approach problems from a are important variety of angles, and to accommodate different types of learning styles. highlights! Each chapter includes learning outcomes, highlights of important con- cepts in the margins, and a summary of new equations, symbols and skills obtained. Special thanks to Gary M. Pollack, PhD, Jeannie Padowski, PhD, and Kerri A. McEnroe for help in putting this book together and all editorial comments. Special thanks for all the student-pharmacists who offered input on making the book better. Finally, a special thanks to Gunther Hochhaus, PhD for daring me to write a book. 2 The SQ4R Method of Reading The SQ4R method of reading is based on some well-established princi- ples of learning from cognitive psychology. Numerous studies indicate using the SQ4R method can make a significant difference in the amount of information recalled at a later time point (like examinations). SQ4R leads to a more active learning environment and deeper processing of information. Most students use a rather passive learning strategy. Pas- sively reading your notes may lead to the 'labor in vain' effect, where you work very hard, but remember very little. SURVEY Take a look at the material: skim the chapter headings and the boldface words, and read the learning objectives. Studies show that subjects who read a summary recalled the material better, particularly when they read the summary first. This is why this book starts with a chapter “In Brief”. QUESTIONS Make up questions about the things you found in the preview and from the learning objectives. Often you can just transform a section heading into a question. For example, the section heading might be Zero-order vs. First-order kinetics, and you could then develop a question that states “What is the difference between zero-order and first-order kinet- ics?” This simple technique could double the amount you can remem- ber. READ As you read, try to answer the questions you developed. Make notes as you read. Understand the vocabulary. It is extremely important that any notes you make are in your own words and not merely duplicating the exact wording used in the text. RECITE Say the material over to yourself; put it into your own words. Answer the questions you developed. One form of recitation is to try to write your own study guide - write out the ideas in your own words, using your own organization. Another form is to try to explain the ideas to somebody else; imagine explaining perceptual maps to your mother. Or perhaps you can invent mnemonics to help remember terms. If you can’t recall enough, reread sections you had trouble remembering. 3 WRITE (or RECALL) Write down summaries in your own words. Recall information as much as possible as if you are taking a quiz or assessment. Practice recall, practice problem solving, then practice some more. Practicing recall can be more effective than simply re-reading the material. REVIEW Try to recall the material and test yourself. Study partners can help here. Making up a quiz for yourself as part of recitation and then taking it as review is a good way to study. You should review several times during your studying so you know what to concentrate on. Again, try answering the questions you made up. 4 Table of Contents About This Book .................................................................................... 2 The SQ4R Method of Reading .............................................................. 3 Table of Contents .................................................................................. 5 1) Introduction .................................................................................... 6 2) Pharmacokinetic Tools ................................................................. 11 3) Distribution Phenomenon ............................................................. 25 4) Clearance Concepts .................................................................... 36 5) Intravenous Bolus ........................................................................ 47 6) Extravascular Administration ........................................................ 57 7) Intravenous Infusion ..................................................................... 80 8) Multiple Dosing ............................................................................ 95 9) Hepatic Clearance ..................................................................... 127 10) Metabolite Kinetics ................................................................. 149 11) Renal Clearance ..................................................................... 154 12) Multi-Compartment Models .................................................... 176 13) Nonlinear Pharmacokinetics ................................................... 194 14) Pharmacodynamic Basics ...................................................... 214 Appendix A: Math Basics .................................................................. 237 Appendix B: Common Pharmacokinetic Terms and Their Units........ 245 Appendix C: Useful Equations .......................................................... 246 Appendix D: Method of Residuals ..................................................... 248 Index ................................................................................................. 252 5 1) Introduction Goal To develop a definition of the term “pharmacokinetics” and to under- stand how this field of study impacts the health care system, including the pharmaceutical industry, pharmacists, patients, and researchers. Objectives By the end of this chapter, you should be able to: Describe the differences between pharmacokinetics, biopharmaceu- tics and pharmacodynamics Describe the role of pharmacokinetics in the treatment of patients and in the pharmaceutical industry Explain the implications of therapeutic drug monitoring and discuss the role pharmacokinetics plays in this process In Brief This chapter defines pharmacokinetics (i.e., what the body does to the drug) and pharmacodynamics (i.e., what the drug does to the body). It discusses the importance of pharmacokinetics and dynamics for patient care and describes therapeutic drug monitoring – the monitoring of med- ications typically with low therapeutic indexes (the ratio between the tox- ic and therapeutic effects). For patient care, pharmacokinetics can help facilitate decisions for dose amount and frequency or the impact of drug interactions. Within the pharmaceutical industry, pharmacokinetics helps determine the appropriate dose and adds to labeling information. In the hospital setting, we have direct and measurable information to inform our pharmacokinetic analysis (e.g., serum creatinine, blood concentra- tions of drug, pharmacodynamic effects like INR). In the community set- ting, we often do not have these direct and measurable information, but we have context clues. Understanding the patient (e.g., elderly, obese, pregnant) and their medications (e.g., which are renal cleared) are im- portant in counseling and medication selection. Introduction Pharmacokinetics: I nput Pharmacokinetics (PK) is the study of how a drug behaves in the body. T ransfer In other words, pharmacokinetics is the study of “what the body does to E limination a drug.” Most textbooks use the acronym ADME to refer to four pro- What the body does to cesses relevant to pharmacokinetics,
Recommended publications
  • 1: Clinical Pharmacokinetics 1
    1: CLINICAL PHARMACOKINETICS 1 General overview: clinical pharmacokinetics, 2 Pharmacokinetics, 4 Drug clearance (CL), 6 Volume of distribution (Vd), 8 The half-life (t½), 10 Oral availability (F), 12 Protein binding (PB), 14 pH and pharmacokinetics, 16 1 Clinical pharmacokinetics General overview General overview: clinical pharmacokinetics 1 The ultimate aim of drug therapy is to achieve effi cacy without toxicity. This involves achieving a plasma concentration (Cp) within the ‘therapeutic window’, i.e. above the min- imal effective concentration (MEC), but below the minimal toxic concentration (MTC). Clinical pharmacokinetics is about all the factors that determine variability in the Cp and its time-course. The various factors are dealt with in subsequent chapters. Ideal therapeutics: effi cacy without toxicity Minimum Toxic Concentration (MTC) Ideal dosing Minimum Effective Concentration (MEC) Drug concentration Time The graph shows a continuous IV infusion at steady state, where the dose-rate is exactly appropriate for the patient’s clearance (CL). Inappropriate dosing Dosing too high in relation to the patient’s CL – toxicity likely Minimum Toxic Concentration (MTC) Minimum Effective Concentration (MEC) Dosing too low in relation to the Drug concentration patient’s CL – drug may be ineffective Time Some reasons for variation in CL Low CL High CL Normal variation Normal variation Renal impairment Increased renal blood fl ow Genetic poor metabolism Genetic hypermetabolism Liver impairment Enzyme induction Enzyme inhibition Old age/neonate 2 General overview Clinical Pharmacokinetics Pharmacokinetic factors determining ideal therapeutics If immediate effect is needed, a loading dose (LD) must be given to achieve a desired 1 concentration. The LD is determined by the volume of distribution (Vd).
    [Show full text]
  • Prediction of Clinical Transporter‐Mediated Drug–Drug Interactions
    Citation: CPT Pharmacometrics Syst. Pharmacol. (2020) 9, 211–221; doi:10.1002/psp4.12505 ARTICLE Prediction of Clinical Transporter-Mediated Drug–Drug Interactions via Comeasurement of Pitavastatin and Eltrombopag in Human Hepatocyte Models Simon J. Carter1, Bhavik Chouhan2, Pradeep Sharma3 and Michael J. Chappell1,* A structurally identifiable micro-rate constant mechanistic model was used to describe the interaction between pitavastatin and eltrombopag, with improved goodness-of-fit values through comeasurement of pitavastatin and eltrombopag. Transporter association and dissociation rate constants and passive rates out of the cell were similar between pitavastatin and eltrom- bopag. Translocation into the cell through transporter-mediated uptake was six times greater for pitavastatin, leading to pronounced inhibition of pitavastatin uptake by eltrombopag. The passive rate into the cell was 91 times smaller for pitavas- tatin compared with eltrombopag. A semimechanistic physiologically-based pharmacokinetic (PBPK) model was developed to evaluate the potential for clinical drug–drug interactions (DDIs). The PBPK model predicted a twofold increase in the pita- vastatin peak blood concentration and area under the concentration-time curve in the presence of eltrombopag in simulated healthy volunteers. The use of structural identifiability supporting experimental design combined with robust micro-rate con- stant parameter estimates and a semimechanistic PBPK model gave more informed predictions of transporter-mediated DDIs. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? model fits through micro-rate constants compared with ✔ Currently, most in vitro models are not guided by macro-rate constants in human hepatocytes, with addi- structural identifiability analysis, relying on substrate-only tional information provided regarding transporter binding.
    [Show full text]
  • Pharmacodynamics - I
    Pharmacodynamics - I Dr. Jyoti M. Benni Dept. of Pharmacology USM-KLE, IMP Belgaum Learning outcomes • Describe the principles of pharmacodynamics with regard to the potential targets of -drug action -receptor types -dose-response relationship (curve) -therapeutic index 2 Introduction: PK & PD 3 Pharmacodynamics Pharmacodynamics is the study of actions of the drug on the body and their mechanism of action. Stimulation Depression Irritation Replacement Modify immune status Anti-infective / Cytotoxic action 4 Mechanisms of Drug Action Non-receptor mediated Receptor mediated • Physical • Receptors on the cell • Chemical membrane • Enzymes • Ion channels • Transporters • Receptors inside the cell • Antibody • Placebo 5 Non – receptor mediated mechanisms… Physical property . Physical property of the drug is responsible E.g. Adsorption: activated charcoal in treatment of poisoning Osmotic activity: magnesium sulfate for constipation Radioactivity: radioactive iodine (I131 ) for hyperthyroidism Radioopacity: barium sulfate as contrast media 6 Non – receptor mediated mechanisms… Chemical action Antacids - neutralize gastric acid Chelating agents (EDTA) Used in heavy metal (LEAD)poisoning treatment Oxidizing agents potassium permanganate as germicidal agent 7 Non – receptor mediated mechanisms… Enzymes as targets of drug action Enzymes Inhibition Stimulation Enzyme Nonspecific Specific induction Competitive Noncompetitive 8 Non – receptor mediated mechanisms… Enzyme stimulation: • Reactivation e.g. Injection pralidoxime → for treatment of Organophosphorus
    [Show full text]
  • Multidrug-Resistant Gram-Negative Bacteria
    Multidrug-Resistant Gram-Negative Bacteria: Trends, Risk Factors, and Treatments A worldwide public health problem, antibiotic resistance leads to treatment-resistant infections associated with prolonged hospitalizations, increased cost, and greater risk for morbidity. Lee S. Engel MD, PhD CASE INTRODUCTION An 80-year-old female nursing home resident with Antibiotics have saved the lives of millions of people a history of dementia, anemia, atrial fibrillation, and have contributed to the major gains in life ex- hypertension, incontinence, and recurrent urinary pectancy over the last century. In US hospitals, 190 tract infections (UTIs), as well as a long-term Foley million doses of antibiotics are administered each catheter, is admitted because she was found to be day.1 Furthermore, more than 133 million courses febrile and less responsive than normal. The patient of antibiotics are prescribed each year for outpatients. has no drug allergies. Upon admission, she has a However, antibiotic use has also resulted in a major temperature of 38.9ºC, heart rate of 92 beats/min, health care challenge—the development and spread and blood pressure of 106/64 mm Hg. The patient of resistant bacteria. Worldwide, antimicrobial resis- opens her eyes to stimuli but does not speak. Aside tance is most evident in diarrheal diseases, respira- from poor dentition and an irregular heart rate, tory tract infections, meningitis, sexually transmitted findings on physical examination, which includes infections, and hospital and health care–acquired in- a pulmonary and abdominal examination, are nor- fections.2 Vancomycin-resistant enterococci, methi- mal. Serum chemistries demonstrate a white blood cillin-resistant Staphylococcus aureus, multidrug-resis- cell (WBC) count of 11,300 cells/mm3.
    [Show full text]
  • Exploring the Concept of Safety and Tolerability
    SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Session 1 Exploring the Concepts of Safety and Tolerability: Incorporating the Patient Voice SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Disclaimer • The views and opinions expressed in the following slides are those of the individual presenters and should not be attributed to their respective organizations/companies, the U.S. Food and Drug Administration or the Critical Path Institute. • These slides are the intellectual property of the individual presenters and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. All trademarks are the property of their respective owners. 3 Session Participants Chair • Bindu Kanapuru, MD – Medical Officer, Division of Hematology Products, OHOP, FDA Presenters • James (Randy) Hillard, MD – Professor of Psychiatry, Michigan State University • Crystal Denlinger, MD, FACP – Associate Professor, Department of Hematology/Oncology; Chief, Gastrointestinal Medical Oncology; Director, Survivorship Program; Deputy Director, Phase 1 Program, Fox Chase Cancer Center • Katherine Soltys, MD – Acting Director, Bureau of Medical Sciences, Therapeutic Products Directorate, Health Products and Food Branch, Health Canada • Karen E. Arscott, DO, MSc – Associate Professor of Medicine-Patient Advocate and Survivor, Geisinger Commonwealth
    [Show full text]
  • 624.Full.Pdf
    1521-009X/44/5/624–633$25.00 http://dx.doi.org/10.1124/dmd.115.068932 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:624–633, May 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Development of a Rat Plasma and Brain Extracellular Fluid Pharmacokinetic Model for Bupropion and Hydroxybupropion Based on Microdialysis Sampling, and Application to Predict Human Brain Concentrations Thomas I.F.H. Cremers, Gunnar Flik, Joost H.A. Folgering, Hans Rollema, and Robert E. Stratford, Jr. Brains On-Line BV, Groningen, The Netherlands (T.I.F.H.C., G.F. J.H.A.F.); Rollema Biomedical Consulting, Mystic, Connecticut (H.R.); and Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (R.E.S.) Received December 11, 2015; accepted February 24, 2016 Downloaded from ABSTRACT Administration of bupropion [(6)-2-(tert-butylamino)-1-(3-chlorophenyl) concentration ratio at early time points was observed with propan-1-one] and its preformed active metabolite, hydroxybupropion bupropion; this was modeled as a time-dependent uptake clear- [(6)-1-(3-chlorophenyl)-2-[(1-hydroxy-2-methyl-2-propanyl)amino]- ance of the drug across the blood–brain barrier. Translation of the 1-propanone], to rats with measurement of unbound concentrations model was used to predict bupropion and hydroxybupropion dmd.aspetjournals.org by quantitative microdialysis sampling of plasma and brain extra- exposure in human brain extracellular fluid after twice-daily cellular fluid was used to develop a compartmental pharmacoki- administration of 150 mg bupropion. Predicted concentrations netics model to describe the blood–brain barrier transport of both indicate that preferential inhibition of the dopamine and norepi- substances.
    [Show full text]
  • Activity Intrinsic
    Vol. (Suppl. ) Intrinsic 201 Activity www.IntrinsicActivity.org Published by th ISSN 2309-8503 Austrian Pharmacological Society Dopamine 2016 Vienna, 5–8 September 2016 MAEETING BSTRACTS Intrinsic Activity is an online, open-access publication medium published by the Austrian Pharmacological Society (APHAR). The Journal welcomes contributions in the fields of Pharmacology, Pharmacotherapy and other fields in biomedicine. Contributions may be of type meeting abstracts, research articles, position papers, commentaries or similar. For submission instructions and all other information regarding publication in the journal visit: www.IntrinsicActivity.org Correspondence Intrinsic Activity c/o Institute for Experimental and Clinical Pharmacology Medical University of Graz Universitätsplatz 4 8010 Graz, Austria Tel.: +43 (316) 380-4305 Fax: +43 (316) 380-9645 E-mail: [email protected] Website: www.IntrinsicActivity.org ISSN: 2309-8503 Austrian Pharmacological Society c/o Institute of Pharmacology Centre for Physiology and Pharmacology Medical University of Vienna Währinger Straße 13a 1090 Wien, Austria E-mail: [email protected] Copyright, open access and permission to use Articles are published under a Creative Commons license (Creative Commons, attribution, non-commercial), that allows reuse subject only to the use being non-commercial and the article being fully attributed. The Publisher and Austrian Pharmacological Society retain the license that allows publishing of the articles in Intrinsic Activity, any derivative product or any other Intrinsic Activity product (present or future) and allows sub-licensing such rights and exploit all subsidiary rights. Authors retain the license to use their articles for their own non-commercial purposes, specifically: Posting a pdf of their own article on their own personal or institutional website for which no charge for access is made.
    [Show full text]
  • Antimicrobial Stewardship Guidance
    Antimicrobial Stewardship Guidance Federal Bureau of Prisons Clinical Practice Guidelines March 2013 Clinical guidelines are made available to the public for informational purposes only. The Federal Bureau of Prisons (BOP) does not warrant these guidelines for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. Consult the BOP Clinical Practice Guidelines Web page to determine the date of the most recent update to this document: http://www.bop.gov/news/medresources.jsp Federal Bureau of Prisons Antimicrobial Stewardship Guidance Clinical Practice Guidelines March 2013 Table of Contents 1. Purpose ............................................................................................................................................. 3 2. Introduction ...................................................................................................................................... 3 3. Antimicrobial Stewardship in the BOP............................................................................................ 4 4. General Guidance for Diagnosis and Identifying Infection ............................................................. 5 Diagnosis of Specific Infections ........................................................................................................ 6 Upper Respiratory Infections (not otherwise specified) ..............................................................................
    [Show full text]
  • Principle of Pharmacodynamics
    Principle of pharmacodynamics Dr. M. Emamghoreishi Full Professor Department of Pharmacology Medical School Shiraz University of Medical Sciences Email:[email protected] Reference: Basic & Clinical Pharmacology: Bertrum G. Katzung and Anthony J. Treveror, 13th edition, 2015, chapter 20, p. 336-351 Learning Objectives: At the end of sessions, students should be able to: 1. Define pharmacology and explain its importance for a clinician. 2. Define ―drug receptor‖. 3. Explain the nature of drug receptors. 4. Describe other sites of drug actions. 5. Explain the drug-receptor interaction. 6. Define the terms ―affinity‖, ―intrinsic activity‖ and ―Kd‖. 7. Explain the terms ―agonist‖ and ―antagonist‖ and their different types. 8. Explain chemical and physiological antagonists. 9. Explain the differences in drug responsiveness. 10. Explain tolerance, tachyphylaxis, and overshoot. 11. Define different dose-response curves. 12. Explain the information that can be obtained from a graded dose-response curve. 13. Describe the potency and efficacy of drugs. 14. Explain shift of dose-response curves in the presence of competitive and irreversible antagonists and its importance in clinical application of antagonists. 15. Explain the information that can be obtained from a quantal dose-response curve. 16. Define the terms ED50, TD50, LD50, therapeutic index and certain safety factor. What is Pharmacology?It is defined as the study of drugs (substances used to prevent, diagnose, and treat disease). Pharmacology is the science that deals with the interactions betweena drug and the bodyor living systems. The interactions between a drug and the body are conveniently divided into two classes. The actions of the drug on the body are termed pharmacodynamicprocesses.These properties determine the group in which the drug is classified, and they play the major role in deciding whether that group is appropriate therapy for a particular symptom or disease.
    [Show full text]
  • A Primer on Pharmacology
    A primer on pharmacology Universidade do Algarve Faro 2017 by Ferdi Engels, Ph.D. 1 2 1 3 Utrecht university campus ‘de Uithof’ Dept. of Pharmaceutical Sciences Division of Pharmacology 4 2 Bachelor and master education Ferdi Engels, PhD ‐ Associate professor of pharmacology ‐ Director of Undergraduate School of Science PhD training Research expertise 5 for today 1. Understand the main concepts of pharmacokinetics Main concept 2. Be able to apply this new knowledge 6 3 Pharmacology is about drugs………. Drugs = chemicals that alter physiological processes in the body for treatment, prevention, or cure of diseases input output (administration of the drug) (biological response) ‐ dose ‐ no effect ‐ frequency of administration ‐ beneficial effects ‐ route of administration ‐ adverse / toxic effects onset, intensity, and duration of therapeutic effects 7 Pharmacology is about drugs………. Drugs = chemicals that alter physiological processes in the body for treatment, prevention, or cure of diseases What does the body do to the drug? pharmacokinetics What does the drug do to the body? pharmacodynamics 8 4 Thursday, June 15 Lecture on topic 1 Workshop on topic 1 Friday, June 16 Lecture on topic 2 Workshop on topic 2 Course Topic 1 Course Topic 2 9 Rosenbaum ‐ Basic pharmacokinetics and pharmacodynamics: an integrated textbook and computer simulations, 1st ed. (2011) input output (administration of the drug) (biological response) ‐ dose ‐ no effect ‐ frequency of administration ‐ beneficial effects ‐ route of administration ‐ adverse / toxic effects
    [Show full text]
  • Pharmacodynamics Drug Receptor Interactions Part-2
    Pharmacodynamics: (Drug Receptor Interactions, Part 2) ………………………………………………………………………………………………………………………………………………………………………………………………………………… VPT: Unit I; Lecture-22 (Dated 03.12.2020) Dr. Nirbhay Kumar Asstt. Professor & Head Deptt. of Veterinary Pharmacology & Toxicology Bihar Veterinary College, Bihar Animal Sciences University, Patna Drug Receptor Interactions Agonist It is a drug that possesses affinity for a particular receptor and causes a change in the receptor that result in an observable effect. Full agonist: Produces a maximal response by occupying all or a fraction of receptors. (Affinity=1, Efficacy=1) Partial agonist: Produces less than a maximal response even when the drug occupies all of the receptors. (Affinity=1, Efficacy= 0 to 1) Inverse agonist: Activates a receptor to produce an effect in the opposite direction to that of the well recognized agonist. (Affinity=1, Efficacy= –1 to 0). Source: Rang & Dale’s Pharmacology, Elsevier Source: Good & Gilman’s The Pharmacological Basis of Therapeutics, 13th Edn. Antagonist An antagonist is a drug that blocks the response produced by an agonist. Antagonists interact with the receptor or other components of the effector mechanism, but antagonists are devoid of intrinsic activity (Affinity=1, Efficacy=0). Antagonist contd… Competitive Antagonism: It is completely reversible; an increase in the concentration of the agonist in the bio-phase will overcome the effect of the antagonist. Example: Atropine (Antimuscarinic agent) Diphenhydramine (H1 receptor blocker) Non-competitive antagonism: The agonist has no influence upon the degree of antagonism or its reversibility. Example: Platelet inhibiting action of aspirin (The thromboxane synthase enzyme of platelets is irreversibly inhibited by aspirin, a process that is reversed only by production of new platelets).
    [Show full text]
  • Bugs, Drugs, and Cancer: Can the Microbiome Be a Potential
    REVIEWS Drug Discovery Today Volume 24, Number 4 April 2019 Reviews Bugs, drugs, and cancer: can the GENE TO SCREEN microbiome be a potential therapeutic target for cancer management? 1,z 2,z 1 1 Biying Chen , Guangye Du , Jiahui Guo and Yanjie Zhang 1 Department of Oncology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China 2 Department of Pathology, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China Outnumbering our own cells over ten times, gut microbes can even be considered an additional organ. Several studies have explored the association between microbiomes and antitumor drug response. It has been reported that the presence of specific bacteria might modulate cancer progression and the efficacy of anticancer therapeutics. Bacteria-targeting intervention can provide crucial guidance for the design of next-generation antitumor drugs. Here, we review previous findings elucidating the impact of gut microbiomes on cancer treatment and the possible underlying mechanisms. In addition, we examine the role of microbiome manipulation in controlling tumor growth. Finally, we discuss concerns regarding the alteration of the microbiome composition, and the potential approaches to surpass existing limitations. Introduction cantly during life [5] (Fig. 1). Gut microbial density increases from The microbiota is defined as all microorganisms that are associated the proximal to the distal GI tract and along the tissue–lumen axis. with a specific host cellular environment [1]. These microorganisms Similarly, diversity further increases in the same pattern [6]. More- are identified using 16S ribosomal RNA (rRNA)sequencing.
    [Show full text]