Prehistoric and Modern Debris Flows in Semi-Arid Watersheds: Implications for Hazard Assessments in a Changing Climate

Total Page:16

File Type:pdf, Size:1020Kb

Prehistoric and Modern Debris Flows in Semi-Arid Watersheds: Implications for Hazard Assessments in a Changing Climate Prehistoric and modern debris flows in semi-arid watersheds: Implications for hazard assessments in a changing climate Item Type text; Electronic Dissertation Authors Youberg, Ann M. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 22:25:06 Link to Item http://hdl.handle.net/10150/312570 PREHISTORIC AND MODERN DEBRIS FLOWS IN SEMI-ARID WATERSHEDS: IMPLICATIONS FOR HAZARD ASSESSMENTS IN A CHANGING CLIMATE By Ann M. Youberg ________________________________________ A dissertation Submitted to the Faculty of the DEPARTMENT OF HYDROLOGY AND WATER RESOURCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY with a major in Hydrology In the Graduate College UNIVERSITY OF ARIZONA 2013 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Ann Youberg, Entitled Prehistoric and Modern Debris Flows in Semi-Arid Watersheds: Implications for Hazard Assessments in a Changing Climate and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. th _______________________________________________________________________ Date: November 25 , 2013 Victor R. Baker th _______________________________________________________________________ Date: November 25 , 2013 Robert H. Webb th _______________________________________________________________________ Date: November 25 , 2013 Peter A. Troch th _______________________________________________________________________ Date: November 25 , 2013 Jon D. Pelletier th _______________________________________________________________________ Date: November 25 , 2013 Philip A. Pearthree Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ________________________________________________ Date: November 25th, 2013 Dissertation Director: Victor R. Baker ________________________________________________ Date: November 25th, 2013 Dissertation Director: Robert H. Webb 2 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Ann M Youberg 3 ACKNOWLEDGMENTS As with all projects this large and complex, there are many people to thank. First, I would like to thank all of my committee and especially my co-advisors, Vic Baker and Bob Webb, for their guidance, insights and mentoring. Bob Webb and Phil Pearthree did their best to keep me on track. I particularly want to thank Phil, who has been my Section Chief and mentor for the past 14 years at the Arizona Geological Survey. Phil planted the idea of this dissertation when we were surveying the post-Aspen Fire flood damage in Romero Canyon. Everyone at the Arizona Geological Survey has supported or encouraged me in some way. I particularly want to thank Lee Allison, director of the AZGS, for his continued support throughout this process, and for his ongoing encouragement and support for exploring new research opportunities that haven’t traditionally been part of the Survey’s program. Joe Cook is a most excellent field partner and has taught me how to better tell the geomorphic story. Janel Day, Steve Richard, and Adrian Sonnenschein helped me with GIS and data problems, and Jeri Young and Brian Gootee provided encouragement and perspective. I have been very fortunate to have worked with, and be mentored by, many wonderful people not associated with the University or the AZGS. I particularly want thank Sue Cannon for her mentoring, and also for her financial support. Sue’s knowledge of post-wildfire debris flows is unsurpassed and I appreciate her sharing her knowledge with me. Deb Martin, John Moody, Jason Kean, and Dennis Staley have provided countless hours of guidance and feedback. I look forward to continued collaborations. Many people US Forest Service have contributed, supported or encouraged this work in some way. In particular I want to thank Bob Lefevre and Randal Smith, both now retired, for their encouragement and for providing early opportunities for me to learn about post-wildfire erosion. Jennifer Ruyle has provided much appreciated support for this work. Salak Shafiquillah, Marc Stamer, Michele Girard, Dan Neary, Karen Koestner, Kyle Wright, Kit MacDonald, Polly Haessig, Chris Stewart, Jalyn Cummings, Adam Springer, and Peter Koestner all helped me in some way to learn about assessing the impacts from wildfires and what the important questions are. Erica Bigio has been a good friend, an excellent field partner and a collaborator throughout this process. I value her perspective and appreciate her help in solving problems. Steve DeLong provided guidance, encouragement and, by example, taught me how to approach problems. Finally, I particularly want to thank my husband, Bob Czaja, who was not keen on the idea of me pursuing a PhD but nevertheless supported me throughout. Thank you. 4 DEDICATION I dedicate this dissertation to Dave Youberg, Bob Czaja, and Francis Sutherland. In memory of my mother Kathryn Margaret Myers Youberg. March 3, 1931 – February 13, 2010 5 TABLE OF CONTENTS ABSTRACT .................................................................................................................................. 10 CHAPTER 1: INTRODUCTION ................................................................................................. 14 1.1 Statement of problem .......................................................................................................... 14 1.2 Background ......................................................................................................................... 17 1.2.1 Debris flows in Arizona ........................................................................................ 21 1.2.2 Post-wildfire debris flows ..................................................................................... 24 CHAPTER 2: THE PRESENT STUDY ....................................................................................... 29 2.1 Appendix A: Increased debris-flow activity and magnitude during the Pleistocene- Holocene climatic transition, Santa Catalina Mountains, Pima County, Arizona; implications for modern debris-flow hazards. ............................................................................................... 29 2.1.2 Abstract ................................................................................................................. 30 2.2 Appendix B: Rainfall intensity-duration thresholds and the predictive strengths of three post-wildfire debris-flow models for use in Arizona. ............................................................... 31 2.2.1 Abstract ................................................................................................................. 31 2.3 Appendix C: Basin physiographic and soil burn severity factors influencing the generation of post-wildfire debris flows. .................................................................................................... 32 2.3.1 Abstract ................................................................................................................. 33 CHAPTER 3: CONCLUSIONS ................................................................................................... 34 3.1 Summary ............................................................................................................................. 34 3.2 Implications for future post-wildfire debris-flow hazard assessments ............................... 36 3.1 Rainfall assessments ................................................................................................ 37 3.2 Basin assessments .................................................................................................... 39 3.3 Conclusions ......................................................................................................................... 43 APPENDIX A: INCREASED DEBRIS-FLOW ACTIVITY AT THE PLEISTOCENE- HOLOCENE CLIMATIC TRANSITION, SANTA CATALINA MOUNTINS, PIMA COUNTY, ARIZONA; IMPLICATIONS FOR MODERN DEBRIS-FLOW HAZARDS ....................................................................................................................................................... 45 A.1 Abstract .............................................................................................................................
Recommended publications
  • Arizona Forest Action Plan 2015 Status Report and Addendum
    Arizona Forest Action Plan 2015 Status Report and Addendum A report on the strategic plan to address forest-related conditions, trends, threats, and opportunities as identified in the 2010 Arizona Forest Resource Assessment and Strategy. November 20, 2015 Arizona State Forestry Acknowledgements: Arizona State Forestry would like to thank the USDA Forest Service for their ongoing support of cooperative forestry and fire programs in the State of Arizona, and for specific funding to support creation of this report. We would also like to thank the many individuals and organizations who contributed to drafting the original 2010 Forest Resource Assessment and Resource Strategy (Arizona Forest Action Plan) and to the numerous organizations and individuals who provided input for this 2015 status report and addendum. Special thanks go to Arizona State Forestry staff who graciously contributed many hours to collect information and data from partner organizations – and to writing, editing, and proofreading this document. Jeff Whitney Arizona State Forester Granite Mountain Hotshots Memorial On the second anniversary of the Yarnell Hill Fire, the State of Arizona purchased 320 acres of land near the site where the 19 Granite Mountain Hotshots sacrificed their lives while battling one of the most devastating fires in Arizona’s history. This site is now the Granite Mountain Hotshots Memorial State Park. “This site will serve as a lasting memorial to the brave hotshots who gave their lives to protect their community,” said Governor Ducey. “While we can never truly repay our debt to these heroes, we can – and should – honor them every day. Arizona is proud to offer the public a space where we can pay tribute to them, their families and all of our firefighters and first responders for generations to come.” Arizona Forest Action Plan – 2015 Status Report and Addendum Background Contents The 2010 Forest Action Plan The development of Arizona’s Forest Resource Assessment and Strategy (now known as Arizona’s “Forest Action Plan”) was prompted by federal legislative requirements.
    [Show full text]
  • Greater Flagstaff Area Community Wildfire
    GREATER FLAGSTAFF AREA COMMUNITY WILDFIRE PROTECTION PLAN REVIEW & REVISION May 2012 1 PURPOSE In the summer of 2011, the Greater Flagstaff Forests Partnership (GFFP) and Ponderosa Fire Advisory Council (PFAC) initiated a project to “review” the “Community Wildfire Protection Plan for Flagstaff and Surrounding Communities in tHe Coconino and Kaibab National Forests of Coconino County, Arizona” (CWPP). First approved in 2005, the CWPP review is designed to assess the status of implementation activities and evaluate progress towards desired goals. Although not required per the authorizing legislation (Healthy Forest Restoration Act of 2003 - HFRA), nor by the CWPP itself, this was intended to analyze activity within the CWPP area that addressed goals or was influenced by the plan, and to develop a report for local government and land management agencies on findings - it was not designed to revise the text or intent of the CWPP. Primary emphasis was placed on summarizing treatment activity to date and reviewing the “Improved Protection Capabilities” section included on pages 40-43 of the Plan. INTRODUCTION The Greater Flagstaff Area Community Wildfire Protection Plan was approved by the Arizona State Forester, Coconino County, City of Flagstaff, and Ponderosa Fire Advisory Council (representing local fire departments and fire districts) in January of 2005. Jointly developed by the GFFP and PFAC, the plan covered a 939,736-acre area centered on Flagstaff. Working closely with US Forest Service staff and the NAU Forest Ecosystem Restoration Analysis (Forest ERA) program, the CWPP was designed to address the following Goal, Objectives and Principles (quoted form the CWPP): GOAL To protect Flagstaff and surrounding communities, and associated values and infrastructure, from catastrophic wildfire by means of: a) An educated and involved public, b) Implementation of forest treatment projects designed to reduce wildfire threat and improve long term forest health, in a progressive and prioritized manner, and c) Utilization of FireWise building techniques and principles.
    [Show full text]
  • Composition and Accretion of the Terrestrial Planets
    Lunar and Planetary Science XXXI 1546.pdf COMPOSITION AND ACCRETION OF THE TERRESTRIAL PLANETS. Edward R. D. Scott and G. Jeffrey Taylor, Hawai’i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, Univer- sity of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA; [email protected] Abstract: Compositional variations among the spread gravitational mixing of the embryos and their four terrestrial planets are generally attributed to giant 20 impacts [1] rather than to primordial chemical varia- Fig. 2 tions among planetesimals [e.g., 2]. This is largely be- Mars cause modeling suggests that each terrestrial planet ac- 15 creted material from the whole of the inner solar sys- tem [1], and because Mercury’s high density is attrib- 10 Venus Earth uted to mantle stripping in a giant impact [3] and not to its position as the innermost planet [4]. However, Mer- Mercury cury’s high concentration of metallic iron and low con- 5 centration of oxidized iron are comparable to those in recently discovered metal-rich chondrites [5-7]. Since E 0 chondrites are linked isotopically with the Earth, we 0 0.5 1 1.5 2 suggest that Mercury may have formed from metal-rich chondritic material. Venus and Earth have similar con- Semi-major Axis (AU) centrations of metallic and oxidized iron that are inter- fragments, which ensured that each terrestrial planet mediate between those of Mercury and Mars consistent formed from material originally located throughout the with wide, overlapping accretion zones [1]. However, inner solar system (0.5 to 2.5 AU).
    [Show full text]
  • POSSIBLE STRUCTURE MODELS for the TRANSITING SUPER-EARTHS:KEPLER-10B and 11B
    43rd Lunar and Planetary Science Conference (2012) 1290.pdf POSSIBLE STRUCTURE MODELS FOR THE TRANSITING SUPER-EARTHS:KEPLER-10b AND 11b. P. Futó1 1 Department of Physical Geography, University of West Hungary, Szombathely, Károlyi Gáspár tér, H- 9700, Hungary ([email protected]) Introduction:Up to january of 2012,10 super- The planet Kepler-11b has a large radius (1.97 R⊕) for Earths have been announced by Kepler-mission [1] its mass (4.3 M⊕),therefore this planet must have a that is designed to detect hundreds of transiting exo- spherical shell that is composed of low-density materi- planets.Kepler was launched on 6th March,2009 and the als.Considering the planet's average density,it must primary purpose of its scientific program is to search have a metallic core with different possible fractional for terrestrial-sized planets in the habitable zone of mass.Accordinghly,I have made a possible structure Solar-like stars.For the case of high number of discov- model for Kepler-11b in which the selected core mass eries we will be able to estimate the frequency of fraction is 32.59% (similarly to that of Earth) and the Earth-sized planets in our galaxy.Results of the Kepler- water ice layer has a relatively great fractional 's measurements show that the small-sized planets are volume.For case of the selected composition, the icy frequent in the spiral galaxies.A catalog of planetary surface sublimated to form a water vapor as the planet candidates,including objects with small-sized candidate moved inward the central star during its migration.
    [Show full text]
  • Arizona Regional Haze 308
    Arizona State Implementation Plan Regional Haze Under Section 308 Of the Federal Regional Haze Rule Air Quality Division January 2011 (page intentionally blank) TABLE OF CONTENTS CHAPTER 1: INTRODUCTION........................................................................................................ 1 1.1 Overview of Visibility and Regional Haze..................................................................................2 1.2 Arizona Class I Areas.................................................................................................................. 3 1.3 Background of the Regional Haze Rule ......................................................................................3 1.3.1 The 1977 Clean Air Act Amendments................................................................................ 3 1.3.2 Phase I Visibility Rules – The Arizona Visibility Protection Plan ..................................... 4 1.3.3 The 1990 Clean Air Act Amendments................................................................................ 4 1.3.4 Submittal of Arizona 309 SIP............................................................................................. 6 1.4 Purpose of This Document .......................................................................................................... 9 1.4.1 Basic Plan Elements.......................................................................................................... 10 CHAPTER 2: ARIZONA REGIONAL HAZE SIP DEVELOPMENT PROCESS ......................... 15 2.1 Federal
    [Show full text]
  • Coronado National Forest Draft Land and Resource Management Plan I Contents
    United States Department of Agriculture Forest Service Coronado National Forest Southwestern Region Draft Land and Resource MB-R3-05-7 October 2013 Management Plan Cochise, Graham, Pima, Pinal, and Santa Cruz Counties, Arizona, and Hidalgo County, New Mexico The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue SW, Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Front cover photos (clockwise from upper left): Meadow Valley in the Huachuca Ecosystem Management Area; saguaros in the Galiuro Mountains; deer herd; aspen on Mt. Lemmon; Riggs Lake; Dragoon Mountains; Santa Rita Mountains “sky island”; San Rafael grasslands; historic building in Cave Creek Canyon; golden columbine flowers; and camping at Rose Canyon Campground. Printed on recycled paper • October 2013 Draft Land and Resource Management Plan Coronado National Forest Cochise, Graham, Pima, Pinal, and Santa Cruz Counties, Arizona Hidalgo County, New Mexico Responsible Official: Regional Forester Southwestern Region 333 Broadway Boulevard, SE Albuquerque, NM 87102 (505) 842-3292 For Information Contact: Forest Planner Coronado National Forest 300 West Congress, FB 42 Tucson, AZ 85701 (520) 388-8300 TTY 711 [email protected] Contents Chapter 1.
    [Show full text]
  • Planetary Science
    Scientific Research National Aeronautics and Space Administration Planetary Science MSFC planetary scientists are active in Peering into the history The centerpiece of the Marshall efforts is research at Marshall, building on a long history of the solar system the Marshall Noble Gas Research Laboratory of scientific support to NASA’s human explo- (MNGRL), a unique facility within NASA. Noble- ration program planning, whether focused Marshall planetary scientists use multiple anal- gas isotopes are a well-established technique on the Moon, asteroids, or Mars. Research ysis techniques to understand the formation, for providing detailed temperature-time histories areas of expertise include planetary sample modification, and age of planetary materials of rocks and meteorites. The MNGRL lab uses analysis, planetary interior modeling, and to learn about their parent planets. Sample Ar-Ar and I-Xe radioactive dating to find the planetary atmosphere observations. Scientists analysis of this type is well-aligned with the formation age of rocks and meteorites, and at Marshall are involved in several ongoing priorities for scientific research and analysis Ar/Kr/Ne cosmic-ray exposure ages to under- planetary science missions, including the Mars in NASA’s Planetary Science Division. Multiple stand when the meteorites were launched from Exploration Rovers, the Cassini mission to future missions are poised to provide new their parent planets. Saturn, and the Gravity Recovery and Interior sample-analysis opportunities. Laboratory (GRAIL) mission to the Moon. Marshall is the center for program manage- ment for the Agency’s Discovery and New Frontiers programs, providing programmatic oversight into a variety of missions to various planetary science destinations throughout the solar system, from MESSENGER’s investiga- tions of Mercury to New Frontiers’ forthcoming examination of the Pluto system.
    [Show full text]
  • On the Use of Planetary Science Data for Studying Extrasolar Planets a Science Frontier White Paper Submitted to the Astronomy & Astrophysics 2020 Decadal Survey
    On the Use of Planetary Science Data for Studying Extrasolar Planets A science frontier white paper submitted to the Astronomy & Astrophysics 2020 Decadal Survey Thematic Area: Planetary Systems Principal Author Daniel J. Crichton Jet Propulsion Laboratory, California Institute of Technology [email protected] 818-354-9155 Co-Authors: J. Steve Hughes, Gael Roudier, Robert West, Jeffrey Jewell, Geoffrey Bryden, Mark Swain, T. Joseph W. Lazio (Jet Propulsion Laboratory, California Institute of Technology) There is an opportunity to advance both solar system and extrasolar planetary studies that does not require the construction of new telescopes or new missions but better use and access to inter-disciplinary data sets. This approach leverages significant investment from NASA and international space agencies in exploring this solar system and using those discoveries as “ground truth” for the study of extrasolar planets. This white paper illustrates the potential, using phase curves and atmospheric modeling as specific examples. A key advance required to realize this potential is to enable seamless discovery and access within and between planetary science and astronomical data sets. Further, seamless data discovery and access also expands the availability of science, allowing researchers and students at a variety of institutions, equipped only with Internet access and a decent computer to conduct cutting-edge research. © 2019 California Institute of Technology. Government sponsorship acknowledged. Pre-decisional - For planning
    [Show full text]
  • Summits on the Air – ARM for the USA (W7A
    Summits on the Air – ARM for the U.S.A (W7A - Arizona) Summits on the Air U.S.A. (W7A - Arizona) Association Reference Manual Document Reference S53.1 Issue number 5.0 Date of issue 31-October 2020 Participation start date 01-Aug 2010 Authorized Date: 31-October 2020 Association Manager Pete Scola, WA7JTM Summits-on-the-Air an original concept by G3WGV and developed with G3CWI Notice “Summits on the Air” SOTA and the SOTA logo are trademarks of the Programme. This document is copyright of the Programme. All other trademarks and copyrights referenced herein are acknowledged. Document S53.1 Page 1 of 15 Summits on the Air – ARM for the U.S.A (W7A - Arizona) TABLE OF CONTENTS CHANGE CONTROL....................................................................................................................................... 3 DISCLAIMER................................................................................................................................................. 4 1 ASSOCIATION REFERENCE DATA ........................................................................................................... 5 1.1 Program Derivation ...................................................................................................................................................................................... 6 1.2 General Information ..................................................................................................................................................................................... 6 1.3 Final Ascent
    [Show full text]
  • Field Trip Guide to the 2010 Schultz Fire Burn Area
    Field Trip Guide to the 2010 Schultz Fire Burn Area Arizona Hydrological Society Annual Symposium Flagstaff, Arizona September 18, 2011 Schultz Fire June 20th –June 30th, 2010 The Schultz Fire on June 20th, 2010, as seen from Humphrey’s Peak (Photo: Dan Greenspan, http:/spleen-me.com/blog/) Trip Leaders: Karen Koestner (RMRS), Ann Youberg (AZGS), Daniel G. Neary (RMRS) 1 The symposium planning committee extends a special THANK YOU to the following organizations: - Northern Arizona University, Bilby Research Center, for media type- setting, printing and field trip planning - Northern Arizona University, School of Earth Sciences and Environmental Sustainability for field trip logistical support - U.S. Geological Survey, Arizona Water Science Center for electronic and printed media production - City of Flagstaff for field trip planning and SWAG bags AHS Annual Symposium September 18th, 2011 INTRODUCTION This field trip guide was created for a September 18th, 2011, field trip to the 2010 Schultz Fire burn area northeast of Flagstaff, Arizona, as part of the Arizona Hydrological Society’s Annual Symposium. The guide provides background information on the 2010 Schultz Fire and aftermath (Section 1), site-specific information for each stop on the field trip (Section 2), and a discussion of issues of wildfires in municipal watersheds (Section 3). Section 1 is a re-print of an Arizona Geology newsletter (volume 40, number 10) that provides background on the Schultz Fire, the implementation and efficacy of Burned Area Emergency Response (BAER) mitigation treatments, and an overview of the post-fire flooding and erosion that occurred during the 2010 monsoon (http://azgs.az.gov/arizona_geology/winter10/arizonageology.html).
    [Show full text]
  • Best of Arizona 2012 Williams •Bear Wallow Caf Plus: Escape • Explore •Experience •Explore Escape
    CRUISING AZ BEST OF ARIZONA 2012 in a 1929 Ford AUGUST 2012 ESCAPE • EXPLORE • EXPERIENCE Things — CARL PERKINS to Do Before 31 You Die “If it weren’t for weren’t the rocks it “If in its bed, no song.” the stream have would PLUS: HOPI CHIPMUNKS • THE GRAND CANYON • JIM HARRISON • INDIAN ROAD 8 WILLIAMS • BEAR WALLOW CAFÉ • DUTCH TILTS • ASPENS • STRAWBERRY SCHOOL CONTENTS 08.12 Grand Canyon National Park Third Mesa 2 EDITOR’S LETTER > 3 CONTRIBUTORS > 4 LETTERS TO THE EDITOR > 56 WHERE IS THIS? Supai Parks Williams Oak Creek 5 THE JOURNAL 46 THE MAN IN THE CREEK Strawberry Alpine People, places and things from around the state, including Jim Harrison likes water. Actually, he loves water. Ironically, Cave Creek Hank Delaney, the most unique mail carrier in the world; he doesn’t find a lot of it in Patagonia. What he does find is Point of Pines the Bear Wallow Café, a perfect place for pie in the White inspiration for his novels. He also finds camaraderie in some PHOENIX Mountains; and Williams, our hometown of the month. of the characters who live in his neck of the woods. BY KELLY KRAMER Patagonia 18 31 THINGS TO DO BEFORE PHOTOGRAPHS BY SCOTT BAXTER YOU KICK THE BUCKET 52 SCENIC DRIVE • POINTS OF INTEREST IN THIS ISSUE Everyone needs to see the Grand Canyon before he dies, Point of Pines Road: Elk, pronghorns, bighorns, black bears, but it’s not enough to just see it. It needs to be experi- meadows, mountains, trees, eagles, herons, ospreys ..
    [Show full text]
  • Traditional Resource Use of the Flagstaff Area Monuments
    TRADITIONAL RESOURCE USE OF THE FLAGSTAFF AREA MONUMENTS FINAL REPORT Prepared by Rebecca S. Toupal Richard W. Stoffle Bureau of Applied Research in Anthropology University of Arizona Tucson, AZ 86721 July 19, 2004 TRADITIONAL RESOURCE USE OF THE FLAGSTAFF AREA MONUMENTS FINAL REPORT Prepared by Rebecca S. Toupal Richard W. Stoffle Shawn Kelly Jill Dumbauld with contributions by Nathan O’Meara Kathleen Van Vlack Fletcher Chmara-Huff Christopher Basaldu Prepared for The National Park Service Cooperative Agreement Number 1443CA1250-96-006 R.W. Stoffle and R.S. Toupal, Principal Investigators Bureau of Applied Research in Anthropology University of Arizona Tucson, AZ 86721 July 19, 2004 TABLE OF CONTENTS LIST OF TABLES................................................................................................................... iv LIST OF FIGURES .................................................................................................................iv CHAPTER ONE: STUDY OVERVIEW ..................................................................................1 Project History and Purpose...........................................................................................1 Research Tasks...............................................................................................................1 Research Methods..........................................................................................................2 Organization of the Report.............................................................................................7
    [Show full text]