Release Notes for Debian 8 (Jessie), Armv7 (EABI Hard-Float ABI)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Panstamps Documentation Release V0.5.3
panstamps Documentation Release v0.5.3 Dave Young 2020 Getting Started 1 Installation 3 1.1 Troubleshooting on Mac OSX......................................3 1.2 Development...............................................3 1.2.1 Sublime Snippets........................................4 1.3 Issues...................................................4 2 Command-Line Usage 5 3 Documentation 7 4 Command-Line Tutorial 9 4.1 Command-Line..............................................9 4.1.1 JPEGS.............................................. 12 4.1.2 Temporal Constraints (Useful for Moving Objects)...................... 17 4.2 Importing to Your Own Python Script.................................. 18 5 Installation 19 5.1 Troubleshooting on Mac OSX...................................... 19 5.2 Development............................................... 19 5.2.1 Sublime Snippets........................................ 20 5.3 Issues................................................... 20 6 Command-Line Usage 21 7 Documentation 23 8 Command-Line Tutorial 25 8.1 Command-Line.............................................. 25 8.1.1 JPEGS.............................................. 28 8.1.2 Temporal Constraints (Useful for Moving Objects)...................... 33 8.2 Importing to Your Own Python Script.................................. 34 8.2.1 Subpackages.......................................... 35 8.2.1.1 panstamps.commonutils (subpackage)........................ 35 8.2.1.2 panstamps.image (subpackage)............................ 35 8.2.2 Classes............................................ -
Discrete Cosine Transform for 8X8 Blocks with CUDA
Discrete Cosine Transform for 8x8 Blocks with CUDA Anton Obukhov [email protected] Alexander Kharlamov [email protected] October 2008 Document Change History Version Date Responsible Reason for Change 0.8 24.03.2008 Alexander Kharlamov Initial release 0.9 25.03.2008 Anton Obukhov Added algorithm-specific parts, fixed some issues 1.0 17.10.2008 Anton Obukhov Revised document structure October 2008 2 Abstract In this whitepaper the Discrete Cosine Transform (DCT) is discussed. The two-dimensional variation of the transform that operates on 8x8 blocks (DCT8x8) is widely used in image and video coding because it exhibits high signal decorrelation rates and can be easily implemented on the majority of contemporary computing architectures. The key feature of the DCT8x8 is that any pair of 8x8 blocks can be processed independently. This makes possible fully parallel implementation of DCT8x8 by definition. Most of CPU-based implementations of DCT8x8 are firmly adjusted for operating using fixed point arithmetic but still appear to be rather costly as soon as blocks are processed in the sequential order by the single ALU. Performing DCT8x8 computation on GPU using NVIDIA CUDA technology gives significant performance boost even compared to a modern CPU. The proposed approach is accompanied with the sample code “DCT8x8” in the NVIDIA CUDA SDK. October 2008 3 1. Introduction The Discrete Cosine Transform (DCT) is a Fourier-like transform, which was first proposed by Ahmed et al . (1974). While the Fourier Transform represents a signal as the mixture of sines and cosines, the Cosine Transform performs only the cosine-series expansion. -
Release Notes for Debian 11 (Bullseye), 32-Bit PC
Release Notes for Debian 11 (bullseye), 32-bit PC The Debian Documentation Project (https://www.debian.org/doc/) September 27, 2021 Release Notes for Debian 11 (bullseye), 32-bit PC This document is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. The license text can also be found at https://www.gnu.org/licenses/gpl-2.0.html and /usr/ share/common-licenses/GPL-2 on Debian systems. ii Contents 1 Introduction 1 1.1 Reporting bugs on this document . 1 1.2 Contributing upgrade reports . 1 1.3 Sources for this document . 2 2 What’s new in Debian 11 3 2.1 Supported architectures . 3 2.2 What’s new in the distribution? . 3 2.2.1 Desktops and well known packages . 3 2.2.2 Driverless scanning and printing . 4 2.2.2.1 CUPS and driverless printing . 4 2.2.2.2 SANE and driverless scanning . 4 2.2.3 New generic open command . 5 2.2.4 Control groups v2 . 5 2.2.5 Persistent systemd journal . -
Debian Basic Packaging Workshop
Debian Basic Packaging Workshop Per Andersson <avtobiff@gmail.com> http://sigsucc.se/talks/debian-basic/ FOSS-STHLM, 2010 Outline Why Package for Debian How Does Software Enter Debian? Debian Infrastructure Debian Package Wedge Package Into Debian Maintaining, or, Keeping Package in Debian Tools References and Resources Tools and Practice Why Package for Debian • Help maintain a very popular GNU distribution • GNU and kernels Linux, HURD, kFreeBSD... • 12 arches, 25 000+ packages • Debian is free software with a social contract • Large user base, user and developer communities • Goal: The Universal Operating System • ...i.e. WORLD DOMINATION • Robust package management system • dpkg • APT • Contribute because it is a Good ThingTM • Also, very fun and rewarding How Does Software Enter Debian? • Upstream source • Voluntary work • Request For Package (RFP) • You want someone else to do the job • Intend To Package (ITP) • You will do the job • Checking existing work • Work Needing and Prospective Packages (WNPP) Debian Infrastructure • dpkg, debs • APT • apt-get • aptitude • synaptic • wajig • ... • Repository • dist: Directory containing "distributions", canonical entry point (meta information) • pool: Physical location for all packages of Debian (pre-)releases Debian Package • Source Package • Upstream source with debian/ dir or patched with diff.gz • debian/ • control • copyright • changelog • rules • Package related files • debian/bin-pkg-name • Binary Package • deb or udeb • Package name listed in control field Package • ar(1) archive with -
RISC-V Software Ecosystem
RISC-V Software Ecosystem Palmer Dabbelt [email protected] UC Berkeley February 8, 2015 Software on RISC-V So it turns out there is a lot of software... 2 Software on RISC-V sys-libs/zlib-1.2.8-r1 media-libs/libjpeg-turbo-1.3.1-r1 virtual/shadow-0 virtual/libintl-0-r1 sys-apps/coreutils-8.23 sys-apps/less-471 sys-libs/ncurses-5.9-r3 sys-libs/readline-6.3 p8-r2 app-admin/eselect-python-20140125 sys-apps/gentoo-functions-0.8 sys-libs/glibc-2.20-r1 sys-apps/grep-2.21-r1 dev-libs/gmp-6.0.0a sys-apps/util-linux-2.25.2-r2 virtual/service-manager-0 sys-libs/db-6.0.30-r1 sys-apps/sed-4.2.2 virtual/editor-0 virtual/libiconv-0-r1 sys-apps/file-5.22 sys-devel/gcc-4.9.2-r1 app-arch/bzip2-1.0.6-r7 dev-libs/mpfr-3.1.2 p10 x11-libs/libX11-1.6.2 sys-apps/busybox-1.23.0-r1 sys-process/psmisc-22.21-r2 virtual/pager-0 sys-devel/gcc-config-1.8 net-misc/netifrc-0.3.1 x11-libs/libXext-1.3.3 sys-libs/timezone-data-2014j dev-libs/popt-1.16-r2 x11-libs/libXfixes-5.0.1 app-misc/editor-wrapper-4 sys-devel/binutils-config-4-r1 x11-libs/libXt-1.1.4 net-firewall/iptables-1.4.21-r1 virtual/libffi-3.0.13-r1 x11-libs/fltk-1.3.3-r2 sys-libs/e2fsprogs-libs-1.42.12 sys-libs/cracklib-2.9.2 x11-libs/libXi-1.7.4 dev-libs/libpipeline-1.4.0 sys-apps/kmod-19 x11-libs/libXtst-1.2.2 sys-libs/gdbm-1.11 sys-devel/make-4.1-r1 net-misc/tigervnc-1.3.1-r2 app-portage/portage-utils-0.53 sys-process/procps-3.3.10-r1 dev-lang/perl-5.20.1-r4 sys-apps/sandbox-2.6-r1 sys-apps/iproute2-3.18.0 app-admin/perl-cleaner-2.19 app-misc/pax-utils-0.9.2 virtual/dev-manager-0 perl-core/Data-Dumper-2.154.0 -
I Deb, You Deb, Everybody Debs: Debian Packaging For
I deb, you deb, everybody debs Debian packaging for beginners and experts alike Ondřej Surý • [email protected] • [email protected] • 25. 10. 2017 Contents ● .deb binary package structure ● Source package structure ● Basic toolchain ● Recommended toolchain ● Keeping the sources in git ● Clean build environment ● Misc... ● So how do I become Debian Developer? My Debian portfolio (since 2000) ● Mostly team maintained ● BIRD ● PHP + PECL (pkg-php) ● Cyrus SASL ○ Co-installable packages since 7.x ● Cyrus IMAPD ○ Longest serving PHP maintainer in Debian ● Apache2 + mod_md (fresh) (and still not crazy) ● ...other little stuff ● libjpeg-turbo ○ Transitioned Debian from IIJ JPEG (that Older work crazy guy) to libjpeg-turbo ● DNS Packaging Group ● GTK/GNOME/Freedesktop ○ CZ.NIC’s Knot DNS and Knot Resolver ● Redmine/Ruby ○ NLnet Lab’s NSD, Unbound, getdns, ldns Never again, it’s a straight road to madness ○ PowerDNS ○ ○ BIND 9 ● Berkeley DB and LMDB (pkg-db) ○ One Berkeley DB per release (yay!) Binary package structure ● ar archive consisting of: $ ar xv knot_2.0.1-4_amd64.deb x – debian-binary ○ debian-binary x – control.tar.gz x – data.tar.xz ■ .deb format version (2.0) ○ control.tar.gz $ dpkg-deb -X knot_2.0.1-4_amd64.deb output/ ./ ■ Package informatio (control) ./etc/ ■ Maintainer scripts […] ./usr/sbin/knotd ● {pre,post}{inst,rm} […] Misc (md5sum, conffiles) ■ $ dpkg-deb -e knot_2.0.1-4_amd64.deb DEBIAN/ ○ data.tar.xz $ ls DEBIAN/ conffiles control md5sums postinst postrm preinst ■ Actual content of the package prerm ■ This is what gets installed $ dpkg -I knot_2.0.1-4_amd64.deb ● Nástroje pro práci s .deb soubory new debian package, version 2.0. -
An Optimization of JPEG-LS Using an Efficient and Low-Complexity
Received April 26th, 2021. Revised June 27th, 2021. Accepted July 23th, 2021. Digital Object Identifier 10.1109/ACCESS.2021.3100747 LOCO-ANS: An Optimization of JPEG-LS Using an Efficient and Low-Complexity Coder Based on ANS TOBÍAS ALONSO , GUSTAVO SUTTER , AND JORGE E. LÓPEZ DE VERGARA High Performance Computing and Networking Research Group, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Spain. {tobias.alonso, gustavo.sutter, jorge.lopez_vergara}@uam.es This work was supported in part by the Spanish Research Agency under the project AgileMon (AEI PID2019-104451RB-C21). ABSTRACT Near-lossless compression is a generalization of lossless compression, where the codec user is able to set the maximum absolute difference (the error tolerance) between the values of an original pixel and the decoded one. This enables higher compression ratios, while still allowing the control of the bounds of the quantization errors in the space domain. This feature makes them attractive for applications where a high degree of certainty is required. The JPEG-LS lossless and near-lossless image compression standard combines a good compression ratio with a low computational complexity, which makes it very suitable for scenarios with strong restrictions, common in embedded systems. However, our analysis shows great coding efficiency improvement potential, especially for lower entropy distributions, more common in near-lossless. In this work, we propose enhancements to the JPEG-LS standard, aimed at improving its coding efficiency at a low computational overhead, particularly for hardware implementations. The main contribution is a low complexity and efficient coder, based on Tabled Asymmetric Numeral Systems (tANS), well suited for a wide range of entropy sources and with simple hardware implementation. -
Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae -
LIBJPEG the Independent JPEG Group's JPEG Software README for Release 6B of 27-Mar-1998 This Distribution Contains the Sixth
LIBJPEG The Independent JPEG Group's JPEG software README for release 6b of 27-Mar-1998 This distribution contains the sixth public release of the Independent JPEG Group's free JPEG software. You are welcome to redistribute this software and to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. Serious users of this software (particularly those incorporating it into larger programs) should contact IJG at [email protected] to be added to our electronic mailing list. Mailing list members are notified of updates and have a chance to participate in technical discussions, etc. This software is the work of Tom Lane, Philip Gladstone, Jim Boucher, Lee Crocker, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Guido Vollbeding, Ge' Weijers, and other members of the Independent JPEG Group. IJG is not affiliated with the official ISO JPEG standards committee. DOCUMENTATION ROADMAP This file contains the following sections: OVERVIEW General description of JPEG and the IJG software. LEGAL ISSUES Copyright, lack of warranty, terms of distribution. REFERENCES Where to learn more about JPEG. ARCHIVE LOCATIONS Where to find newer versions of this software. RELATED SOFTWARE Other stuff you should get. FILE FORMAT WARS Software *not* to get. TO DO Plans for future IJG releases. Other documentation files in the distribution are: User documentation: install.doc How to configure and install the IJG software. usage.doc Usage instructions for cjpeg, djpeg, jpegtran, rdjpgcom, and wrjpgcom. *.1 Unix-style man pages for programs (same info as usage.doc). wizard.doc Advanced usage instructions for JPEG wizards only. -
Compiling Your Own Perl
APPENDIX A Compiling Your Own Perl Compiling Perl on a Unix-like system is simple. First, obtain the source for Perl from CPAN (dppl6++_l]j*lanh*knc+on_+NA=@IA*dpih). Then input the following sequence of commands: p]nvtrblanh)1*4*4*p]n*cv _`lanh)1*4*4 od?kjbecqna)`ao i]ga i]gapaop oq`ki]gaejop]hh On most Unix systems, this code will result in your lanh being installed into the +qon+ hk_]h+ directory tree. If you want it installed elsewhere—for example, in the local directory in your home directory—then replace od?kjbecqna)`a with the following: od?kjbecqna)`ao)@lnabet9z+hk_]h+ which should enable you to install Perl on your computer without root access. Note that the )`ao flag uses all the default options for compiling Perl. If you know that you want nonstandard configuration, just use the flag )`a instead to be prompted for your requirements. Be aware that the source for Perl 5.10.0 requires a patch to work properly with Catalyst. This is fixed in subsequent versions of Perl 5.10. If you need to test code guaranteed to run on a wide range of systems, you should con- sider using Perl version 5.8.7. Perl versions greater than 5.8.7 contain features that were not available in earlier versions of Perl, so Perl 5.8.7 is feature complete for all versions of Perl that Catalyst will run on (version 5.8.1 and later). Put another way, versions 5.8.8 and later have new features that you can’t rely on in earlier releases. -
Daala: a Perceptually-Driven Still Picture Codec
DAALA: A PERCEPTUALLY-DRIVEN STILL PICTURE CODEC Jean-Marc Valin, Nathan E. Egge, Thomas Daede, Timothy B. Terriberry, Christopher Montgomery Mozilla, Mountain View, CA, USA Xiph.Org Foundation ABSTRACT and vertical directions [1]. Also, DC coefficients are com- bined recursively using a Haar transform, up to the level of Daala is a new royalty-free video codec based on perceptually- 64x64 superblocks. driven coding techniques. We explore using its keyframe format for still picture coding and show how it has improved over the past year. We believe the technology used in Daala Multi-Symbol Entropy Coder could be the basis of an excellent, royalty-free image format. Most recent video codecs encode information using binary arithmetic coding, meaning that each symbol can only take 1. INTRODUCTION two values. The Daala range coder supports up to 16 values per symbol, making it possible to encode fewer symbols [6]. Daala is a royalty-free video codec designed to avoid tra- This is equivalent to coding up to four binary values in parallel ditional patent-encumbered techniques used in most cur- and reduces serial dependencies. rent video codecs. In this paper, we propose to use Daala’s keyframe format for still picture coding. In June 2015, Daala was compared to other still picture codecs at the 2015 Picture Perceptual Vector Quantization Coding Symposium (PCS) [1,2]. Since then many improve- Rather than use scalar quantization like the vast majority of ments were made to the bitstream to improve its quality. picture and video codecs, Daala is based on perceptual vector These include reduced overlap in the lapped transform, finer quantization (PVQ) [7]. -
Faster Neural Networks Straight from Jpeg
Workshop track - ICLR 2018 FASTER NEURAL NETWORKS STRAIGHT FROM JPEG Lionel Gueguen & Alex Sergeev Rosanne Liu & Jason Yosinski Uber Technologies Uber AI Labs San Francisco, CA 94103, USA San Francisco, CA 94103, USA flgueguen, [email protected] frosanne, [email protected] ABSTRACT Training CNNs directly from RGB pixels has enjoyed overwhelming empirical success. But can more performance be squeezed out of networks by using different input representations? In this paper we propose and explore a simple idea: train CNNs directly on the blockwise discrete cosine transform (DCT) coefficients computed and available in the middle of the JPEG codec. We modify libjpeg to produce DCT coefficients directly, modify a ResNet-50 network to accommodate the differently sized and strided input, and evaluate performance on ImageNet. We find networks that are both faster and more accurate, as well as networks with about the same accuracy but 1.77x faster than ResNet-50. 1 INTRODUCTION Progresses toward training convolutional neural networks on a variety of tasks (Krizhevsky et al., 2012; Mnih et al., 2013; Ren et al., 2015; He et al., 2015) has led to the widespread adoption of such models in both academia and industry. Traditionally CNNs are trained with input provided as an array of red-green-blue (RGB) pixels. In this paper we propose and explore a simple idea for accelerating neural network training and inference where networks are applied to images encoded in the JPEG format. We modify the libjpeg library to decode JPEG images only partially, resulting in an image representation consisting of a triple of tensors containing discrete cosine transform (DCT) coefficients in the YCbCr color space.