(Fusarium Graminearum) of Wheat

Total Page:16

File Type:pdf, Size:1020Kb

(Fusarium Graminearum) of Wheat Vol. 6(2), pp. 77-88, February 2018 DOI: 10.14662/ARJASR2017.069 Academic Research Copy©right 2018 Author(s) retain the copyright of this article Journal of Agricultural ISSN: 2360-7874 Science and Research http://www.academicresearchjournals.org/ARJASR/Index.htm Full Length Research Review on the status and management strategies of Fusarium head blight (Fusarium graminearum) of wheat Belachew Bekele Ethiopian Institute of Agricultural Research, Holeta Research center. E-mail: [email protected] Accepted 18 October 2017 Wheat ( Triticum aestivum L.) is counted among the most commonly cultivated cereal crops with over 600 million tons harvested each year. It is an important crop commodity, which could contribute a major part in achieving the country's agricultural policy objective of food grain self-sufficiency. The most important constraints affecting wheat production include drought, diseases, insects and weeds. Diseases are the major once, which decreases the yield, quality and profitability for producers. Fusarium Head Blight (FHB or scab) is common and damaging fungal disease of wheat that causes losses up to 70% and contaminates harvested grain with mycotoxins. FHB is caused by one or more Fusarium species, mostly by F. graminearum (Schwabe). Its infections cause problems concerning the quality of harvested wheat seeds by producing a variety of mycotoxins, of which deoxynivalenol (DON) is perhaps the most famous. If present in food or feed, DON can result in serious health problems. Moreover, the seeds infected with Fusarium not only have a lower 1000 grain weight but also the present Fusarium fungi can infect the seedling after sowing, thus causing less dense plant stand due to seedling blight. The improvement of FHB resistance has become a major breeding objective worldwide. Environmental conditions have a huge influence on disease development and if prolonged humid weather persists after initial infection, severe FHB will occur. Favorable temperatures for the production of ascospores and macroconidia vary between 16°C to 36°C. Temperature and weather condition determines the severity of disease development. Individual management options are unlikely to fully protect crops from FHB, therefore multiple strategies provide the best means of maintaining yield potential, reducing the risk of mycotoxin contamination, protecting quality, and enhancing producer returns, but it is difficult due to confounding environmental conditions. Key words: Wheat, Fusarium, Mycotoxin, Resistant, Management practices Cite this article as : Bekele B (2018). Review on the status and management strategies of Fusarium head blight (Fusarium graminearum ) of wheat. Acad. Res. J. Agri. Sci. Res. 6(2): 77-88 INTRODUCTION Wheat ( Triticum aestivum L.) is counted among the most Neolithic revolution that was distinguished as a period of commonly cultivated cereal crops with over 600 million transition from hunting and gathering food to one of tons harvested each year (Priyamvada et al., 2011). It settlement and agriculture (Gupta et al ., 2006). Wheat is was cultivated over a wide range of climates with year well adapted to harsh environments, from severe dry to round production about 10,000 years ago as part of the cold conditions, compared to other major cereal crops 1 78 Acad. Res. J. Agri. Sci. Res. (Schery, 1969). The center of origin of wheat is presumed when wheat is sown in the residue from a previous host to be near present day Turkey. Findings suggest that crop such as maize ( Zea mays L.), followed by warm wheat was grown in the Nile Valley around 500 B.C. and humid conditions during flowering. It was first reported in had extended through India, China, and England during 1884 in England (Arthur, 1891) and was recognized as a the same time (Schery , 1969). key problem of wheat during the early twentieth century It is ranked as the 3 rd largest grain crop after corn and (Stack, 2003) and it is one of the most destructive rice in terms of world production (653 million MT diseases of wheat worldwide (Osborne and Stein, 2007 ). annually) (FAO , 2012a). China, India, USA, Russia, and The importance of Fusarium species is related not only France are the leading wheat producing countries; the to the diseases produced to infected plants but also to US ranks third among these (FAO , 2012b). The US is the mycotoxin biosynthesis (trichothecenes) and largest exporter of wheat in the world, which exports 50% accumulation in infected plant material. F. graminearum of its total annual production (FAO , 2012d). strains usually express one of three sets of Ethiopia is the 2 nd largest producer of wheat in Sub- trichothecenes – nivalenol and its derivates (NIV Saharan Africa. In Ethiopia, it is one of the major cereal chemotype), DON and 15-acetyl deoxynivalenol (15- crops grown between 6 and 14 oN latitudes; and between ADON chemotype), and DON and 3-acetyl 35 and 42 oE longitude ranging in altitude from 1500 m to deoxynivalenol (3-ADON chemotype) (Ward et al . 2002). 3200 m. The most suitable regions, however, fall The disease negatively affects yield and grain quality by between 1900 masl and 2700 masl. It is the fourth most damaging wheat kernels and contaminating the grain with important cereal crop in Ethiopia. In area of production, it mycotoxins (Gilbert and Tekauz, 2000). ranks 4 th after teff, maize and sorghum and in total grain Moisture appears to be the most important production, it also ranks 4 th after maize, teff and sorghum. environmental factor influencing the severity of infection In productivity, it ranks second to maize. It is an important caused by F. graminearum in small grain cereals, given crop commodity, which could contribute a major part in that fusarium head blight development can occur at achieving the country's agricultural policy objective of temperatures that range from approximately 9°C to 30° C food grain self-sufficiency. (de Wolf et al., 2000 ). Generally, the disease is more The current total area of production of both durum important in warm and humid areas (Dubin et al., 1996). (Triticum turgidum var. durum ) and bread wheat ( Triticum In the field, (FHB) is recognized by premature bleaching aestivum ) is about 1,627,647.16 ha with an annual of infected spikelet and the production of orange, spore production of 34,347,061.22 quintals (CSA, 2012/2013). bearing structures called sporodochia at the base of the Its productivity (21.10 q/ha) is still below the world glumes. During wet weather, there may be whitish, average (65.5 q/ha) (FAO, 2013). occasionally pinkish, fluffy fungal growth on the infected Wheat is used for consumption by both humans and heads in the field animals (Han et al., 2005). From direct use, wheat To minimize the severity and incidence of FHB and provides more than 35% of dietary calories in the DON content different management strategies, Cultural developing world and 74% in the developed countries practices (tillage, rotation, nutrient management), Host (Shiferaw et al., 2013). The most important constraints plant resistance, Biological control (Trichoderma, affecting wheat production include drought, diseases, Bacillus) (Da Luz et al., 2003) Fungicides insects and weeds. One of the major limiting factors in (Prothioconazole, Tebuconazole) (Baturo Ciesniewska et wheat production is diseases, decreasing the yield, al., 2011) are recommended. quality and profitability for producers. Fusarium head blight (FHB or scab) is common and damaging fungal disease of cereals that causes losses in grain yield and OBJECTIVES quality and contaminates harvested grain with mycotoxins (Buerstmayr et al., 2003). It can cause yield V Review on the impact of Fusarium head blight on losses up to 70% under favourable conditions (Bai et al., wheat grain and quality. 2000). FHB, white heads and pink mold, is mainly V Review on the management strategies of caused by, Fusarium graminearum Schw., with perfect fusarium head blight stage of Gibberella zeae (Schw.) Petch., Seventeen different Fusarium species have been associated with the disease. Among these, Fusarium graminearum is the DISCUSSION most internationally predominate, which is followed by F. culmorum (W.G. Smith) Saccardo and F. avenaceum Distribution (Parry et al., 1995 ; Ruckenbauer et al., 2001 ). FHB is an important disease throughout the wheat F. graminearum is cosmopolitan. It has been reported growing areas of the world. The disease is more severe wherever wheat is grown (Goswami and Kistler, 2004), 2 Bekele 79 Figure 1. Macroconidia of F. graminearum Source: M S Saharan et.al ., 2001. and infection has reached epidemic proportions in the Host Range United States over the last decade (O’Donnell et al., 2000). Fusarium graminearum persists within all of F. graminearum survives on a wide range of hosts central Europe and south western Russia, and infects including not only living plants such as wheat, barley, oat, wheat fields grown along the eastern coast of China, and rye, corn, soybean, sorghum, rice, wild grasses and further inland where irrigation is used (Hope 2005; Qu et. common weeds but also on dead tissue of many plant al., 2008). It is also one of the important diseases of species (Xu YG, Chen LF. 1993). Crop residues on the wheat in Ethiopia (Mengistu et al., 1991). The incidence soil surface are the major reservoir of pathogens of FHB and severity of Fusarium head blight (also called (Shaner GE. 2003). It can also cause disease in Acacia Gibberella zeae ) has increased worldwide (Xu , 2003). (Mill.), Eucalyptus , and carnation ( Dianthus caryophyllus L.), (Urban, M., et.al, 2003). Causal agent Disease development/ cycle Cultural characteristics F. graminearum overwinters as chlamydospores or mycelia in the soil or in host crop residues which serve as F. graminearum in agar culture appears gray, pink, a source of primary (initial) inoculum in the spring. The brown, or burgundy. The temperature optimum for growth fungus also can survive on wheat seed. F. graminearum , in culture ranges from 23-29 0 C.
Recommended publications
  • Idiopathic CD4 Lymphocytopenia: Spectrum of Opportunistic Infections, Malignancies, and Autoimmune Diseases
    Published online: 2021-08-09 REVIEW ARTICLE Idiopathic CD4 Lymphocytopenia: Spectrum of opportunistic infections, malignancies, and autoimmune diseases Dina S. Ahmad, Mohammad Esmadi, William C. Steinmann Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, USA Access this article online ABSTRACT Website: www.avicennajmed.com DOI: 10.4103/2231-0770.114121 Idiopathic CD4 lymphocytopenia (ICL) was first defined in 1992 by the US Centers for Disease Quick Response Code: Control and Prevention (CDC) as the repeated presence of a CD4+ T lymphocyte count of fewer than 300 cells per cubic millimeter or of less than 20% of total T cells with no evidence of human immunodeficiency virus (HIV) infection and no condition that might cause depressed CD4 counts. Most of our knowledge about ICL comes from scattered case reports. The aim of this study was to collect comprehensive data from the previously published cases to understand the characteristics of this rare condition. We searched the PubMed database and Science Direct for case reports since 1989 for Idiopathic CD4 lymphocytopenia cases. We found 258 cases diagnosed with ICL in 143 published papers. We collected data about age, sex, pathogens, site of infections, CD4 count, CD8 count, CD4:CD8 ratio, presence of HIV risk factors, malignancies, autoimmune diseases and whether the patients survived or died. The mean age at diagnosis of first opportunistic infection (or ICL if no opportunistic infection reported) was 40.7 ± 19.2 years (standard deviation), with a range of 1 to 85. One-sixty (62%) patients were males, 91 (35.2%) were females, and 7 (2.7%) patients were not identified whether males or females.
    [Show full text]
  • 153.Full.Pdf
    Copyright Ó 2010 by the Genetics Society of America DOI: 10.1534/genetics.109.113027 A Tetrad Analysis of the Basidiomycete Fungus Cryptococcus neoformans Alexander Idnurm Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110 Manuscript received December 10, 2009 Accepted for publication February 9, 2010 ABSTRACT Cryptococcus neoformans is a basidiomycete fungus that is found worldwide and causes disease in humans and animal species. The fungus grows asexually as a budding yeast. Under laboratory conditions it is capable of sexual reproduction between two mating types. After cell fusion a dikaryotic filament develops, at the tip of which a basidium gives rise to four chains of basidiospores. Because the chains each comprise 10–30 spores, rather than single spores, the analysis of individual meiotic events has not been attempted in C. neoformans in the style of tetrad analyses performed in other fungal species. Here, the basidiospores from .100 basidia were micromanipulated and the resultant .2500 progeny analyzed for three genetic markers to understand the sexual process in this fungus, leading to four observations: (i) Marker seg- regation provides genetic evidence for a single meiotic event within the basidium followed by multiple rounds of mitosis. (ii) Using each basidium as an unordered tetrad, the ADE2 and URA5 genes are linked to their centromeres, consistent with adjacent genomic regions rich in repetitive elements predicted to comprise Cryptococcus centromeres. (iii) Lack of germination of basidiospores is attributed to aneuploidy, rather than dormancy. (iv) Analysis of basidiospores derived from single chains demonstrates that each chain can contain different genotypes.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-50430 Cryptococcus gattii, Strain C10 Propagation: 1. Keep vial frozen until ready for use; thaw rapidly. Catalog No. NR-50430 2. Inoculate an agar plate with approximately 50 µL of thawed culture and/or transfer the entire thawed aliquot into a single tube of broth For research use only. Not for human use. 3. Incubate the plate and/or tube at 25°C for 2 to 4 days. Contributor: Citation: Brian Wong, M.D., Professor, and Igor Bruzual, Ph.D., Acknowledgment for publications should read “The following Infectious Disease Division, Department of Medicine, Oregon reagent was obtained through BEI Resources, NIAID, NIH: Health and Science University, Portland, Oregon, USA Cryptococcus gattii, Strain C10, NR-50430.” Manufacturer: Biosafety Level: 2 BEI Resources Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following Product Description: publication: U.S. Department of Health and Human Services, Classification: Tremellaceae, Cryptococcus Public Health Service, Centers for Disease Control and Species: Cryptococcus gattii Prevention, and National Institutes of Health. Biosafety in Strain: C10 Microbiological and Biomedical Laboratories. 5th ed. Original Source: Cryptococcus gattii (C. gattii), strain C10 Washington, DC: U.S. Government Printing Office, 2009; see was isolated from an unknown human source in the Pacific www.cdc.gov/biosafety/publications/bmbl5/index.htm. Northwest region of North America.1 Comments: C. gattii, strain C10 was deposited as lineage Disclaimers: VGIIa and resistant to azoles.1 You are authorized to use this product for research use only. The Cryptococcus species complex is comprised of four It is not intended for human use.
    [Show full text]
  • Fusarium Graminearum ~4(Final)-1
    MARCH 2016 Fusarium graminearum (Fusarium Head Blight ) T. Kelly Turkington1, Andrew Petran2, Tania Yonow3,4, and Darren J. Kriticos3,4 1 Lacombe Research Centre and Beaverlodge Research Farm, Agriculture and Agri‐Food Canada, Lacombe, Alberta, Canada 2 Department of Horticultural Sciences, University of Minnesota, St. Paul, MN, USA 3 HarvestChoice, InSTePP, University of Minnesota, St. Paul, MN, USA 4 CSIRO, Biosecurity and Agriculture Flagships, Canberra, Australia Background Information Introduction Common Names: Fusarium graminearum Schwabe [teleomorph Gibberella Fusarium head blight; FHB, head blight of maize zeae (Schweinitz) Petch], is of world‐wide importance on small grain cereals and corn, occurring under a wide Scientiic Name: range of soil and environmental conditions (CAB Fusarium graminearum (anamorph = asexual stage), International 2003; Gilchrist and Dubin 2002; Parry et al. Gibberella zeae (teleomorph = sexual stage) 1995; Stack 2003). Since the early 1990s, fusarium head blight (FHB) caused primarily by F. graminearum has Synonyms: become one of the most signiicant cereal diseases faced Botryosphaeria saubinetii, Dichomera saubinetii, by producers in central Canada and the prairie region, Dothidea zeae, Fusarium roseum, Gibbera saubinetii, and the midwestern United States (e.g., Gilbert and Gibberella roseum, Gibberella saubinetii, Sphaeria Tekauz 2000; McMullen et al. 1997b; Tekauz et al. 2000). saubinetii, Sphaeria zeae Fusarium graminearum was identiied by CIMMYT to be a Taxonomy: major limiting factor to wheat production in many parts Kingdom: Animalia; Phylum: Ascomycota; of the world (Stack 1999). The fungus can produce Class: Sordariomycetes; Order: Hypocreales; several mycotoxins, including deoxynivalenol (DON) and Family: Nectriaceae zearalenone. In non‐ruminants, feed contaminated with DON can reduce growth rates, while zearalenone can Crop Hosts: cause reproductive problems (Charmley et al.
    [Show full text]
  • Cryptococcus Gattii Outbreak
    The recent Cryptococcus gattii outbreak A deadly pathway… From Trees to Lungs to Brain ryptococcus gattii disease. The route of C has been in the infection is from breathing the news lately, due to a recent airborne organism, which outbreak in the Pacific becomes lodged in the Northwest. This new, more pulmonary tissues. virulent strain is expected to by Jay Hardy, CLS, SM (NRCM) spread further throughout the Symptoms Northwest and Northern California in the coming The pulmonary disease, Jay Hardy is the founder and months. known as cpryptococcosis, president of Hardy Diagnostics. develops slowly. After He began his career in exposure it can take two to microbiology as a Medical Technologist in Santa Barbara, twelve months for symptoms California. to appear, with the usual onset In 1980, he began at six or seven months. manufacturing culture media for the local hospitals. Today, The symptoms include: Hardy Diagnostics is the third largest media manufacturer in the U.S. • Cough that lasts weeks or months To ensure rapid and reliable turn around time, Hardy • Sharp chest pain Figure 1: An India ink stain Diagnostics maintains six • Unexplained shortness of showing the capsule surrounding distribution centers, and breath produces over 3,000 products the C. gattii cells in the yeast form used in clinical and industrial at 1,000X. Photo from Haley/CDC. • Severe headache microbiology laboratories • Confusion throughout the world. The organism is a fungus that • Fever is usually found in the soil • Night sweats www.HardyDiagnostics.com and on trees. It is not spread • Unintended weight loss from human to human or animal to human.
    [Show full text]
  • Idiopathic CD4 Lymphocytopenia Presenting As Refractory Cryptococcal Meningitis
    Case Report Idiopathic CD4 lymphocytopenia presenting as refractory cryptococcal meningitis A. Sharma, V. Lal, M. Modi, D. Khurana, S. Bal, S. Prabhakar Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh-160 012, India Abstract Idiopathic CD4 T-lymphocytopenia (ICL) is a syndrome characterized by depletion of CD4 T-cells without evidence of human immunodeficiency virus (HIV) infection. There are a few reported cases of ICL associated with different diseases and clinical conditions, most commonly the opportunistic infections like Tuberculosis, fungal and parasitic diseases which are also seen in HIV-positive patients. We report a case without risk factors or laboratory evidence of HIV infection who presented with refractory cryptococcal meningitis and was found to have ICL. Key Words Cryptococcus, CD4, idiopathic For correspondence: Dr. Vivek Lal, Department of Neurology, PGIMER, Sector-12, Chandigarh-160 012, India. E-mail: [email protected] Ann Indian Acad Neurol 2010;13:136-8 [DOI: 10.4103/0972-2327.64646] Introduction and decreased pain and temperature sensation in the right half of the body, with sparing of the face. The neurological Idiopathic CD4 lymphocytopenia (ICL) was defi ned by the examination was otherwise normal. Plain magnetic resonance United States Centers for Disease Control and Prevention imaging (MRI) brain revealed a T2 hyperintensity in the (CDC) as a clinical condition in patients with depressed left thalamus, extending to involve the left corona radiata numbers of circulating CD4 T lymphocytes (<300 cells/µl or [Figure 1]. There was no meningeal enhancement on contrast- <20% of total T cells) at a minimum of two separate time points enhanced MRI.
    [Show full text]
  • Safety Precautions for Working with Cryptococcus Neoformans
    Safety Precautions for Working with Cryptococcus neoformans The basidiomycete fungus Cryptococcus neoformans is an invasive opportunistic pathogen of the central nervous system and the most frequent cause of fungal meningitis worldwide. Although Cryptococcus is a problem in the United States, it is significantly more prevalent and especially devastating in the developing world, such as sub-Saharan Africa, resulting in in more than 625,000 deaths per year worldwide. C. neoformans survives in the environment within soil, trees, and bird guano, where it can interact with wild animals or microbial predators, maintaining its virulence. Human infection is thought to be acquired by inhalation of desiccated yeast cells or spores from an environmental source. C. neoformans can colonize the host respiratory tract without producing any disease. Infection is typically asymptomatic, and it can be either cleared or enter a dormant, latent form. When host immunity is compromised, the dormant form can be reactivated and disseminate hematogenously to cause systemic infection. C. neoformans can infect or spread to any organ to cause localized infections involving the skin, eyes, myocardium, bones, joints, lungs, prostate gland, or urinary tract, in addition to its propensity to infect the central nervous systems. The following diseases and medications are risk factors for C. neoformans infection and are associated with at least some degree of immunosuppression: Ø HIV/AIDs (CD4 < 100cells/mm) Ø Corticosteroids or other immunosuppressive medications for cancer, chemotherapy, or organ transplants Ø Solid organ transplantations Ø Diabetes mellitus Ø Heart, lung, or liver disease Ø Pregnancy Even otherwise healthy, fully immunocompetent individuals can develop cryptococcosis, as may well be the case in a lab accident.
    [Show full text]
  • Fusarium Head Blight of Wheat: Evaluation of the Efficacies Of
    Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China By Chami Chathurangi Amarasinghe A Thesis Submitted to the Faculty of Graduate Studies In partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada ©Copyright by Chami Chathurangi Amarasinghe 2010 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China BY Chami Chathurangi Amarasinghe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree OF MASTER OF SCIENCE Chami Amarasinghe © 2010 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis. The reproduction or copy of this thesis has been made available by authority of copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. ACKNOWLEGMENTS First of all my sincere gratitude goes to Dr.
    [Show full text]
  • Impacts of Changing Climate and Agronomic Factors on Fusarium Ear Blight 1 2 3 2 of Wheat in the UK 4 5 6 3 7 8 4 Jonathan S
    *ManuscriptView metadata, citation and similar papers at core.ac.uk brought to you by CORE Click here to view linked References provided by University of Hertfordshire Research Archive 1 Impacts of changing climate and agronomic factors on fusarium ear blight 1 2 3 2 of wheat in the UK 4 5 6 3 7 8 4 Jonathan S. WESTa*, Sarah HOLDGATEa†, James A. TOWNSENDa, Julia B HALDERad, 9 10 b c a 5 Simon G. EDWARDS , Philip JENNINGS and Bruce D. L. FITT 11 12 13 6 14 15 7 a Rothamsted Research, Harpenden, AL5 2JQ, UK; b Harper Adams University College, 16 17 c 18 8 Newport, TF10 8NB, UK; The Food and Environment Research Agency, Sand Hutton, 19 20 9 York YO41 1LZ, UK; d Imperial College, London; † current address: RAGT Seeds Ltd., 21 22 23 10 Grange Road, Ickleton, Saffron Walden, CB10 1TA, UK 24 25 11 26 27 *E-mail: [email protected] 28 12 29 30 13 31 32 14 Climate change will have direct impacts on fusarium ear blight (FEB) in wheat crops, since 33 34 35 15 weather factors greatly affect epidemics, the relative proportions of species of ear blight 36 37 16 pathogens responsible and the production of deoxynivalenol (DON) toxin by two Fusarium 38 39 40 17 species, F. graminearum and F. culmorum. Many established weather-based prediction 41 42 18 models do not accurately predict FEB severity in the UK. One weather-based model 43 44 45 19 developed with UK data suggests a slight increase in FEB severity under climate change.
    [Show full text]
  • Host Plant Resistance Genes for Fusarium Head Blight: Sources, Mechanisms, and Utility in Conventional Breeding Systems
    Host Plant Resistance Genes for Fusarium Head Blight: Sources, Mechanisms, and Utility in Conventional Breeding Systems J. C. Rudd,* R. D. Horsley, A. L. McKendry, and E. M. Elias ABSTRACT source of complete resistance is known, and current Fusarium head blight (FHB), caused by Fusarium graminearum sources provide only partial resistance. Schwabe [teleomorph Gibberella zeae (Schwein.)], also known as The United States Department of Agriculture (USDA) scab, is a destructive disease of wheat (Triticum aestivum L; T. tur- currently ranks FHB as the worst plant disease of wheat gidum L. var durum) and barley (Hordeum vulgare L.). Host resis- and barley since the stem rust (caused by Puccinia gram- tance has long been considered the most practical and effective means inis Pers.:Pers.) epidemics of the 1950s (Wood et al., of control, but breeding has been hindered by a lack of effective 1999). FHB epidemics have been documented in 26 resistance genes and by the complexity of the resistance in identified states and five Canadian provinces. Yield losses in wheat sources. This paper will provide an overview of progress in developing host plant resistance for FHB, primarily in the USA, by review of since 1990 have exceeded 13 Tg (500 million bushels) the sources of resistance in wheat and barley, and their utilization with economic losses estimated at $2.5 billion (Windels, in breeding programs. Although there are no reported sources of 2000). Wheat yields in 1993 were reduced by about 50% immunity, considerable genetic variability exists for resistance in both in northeastern North Dakota and 40% in northwestern wheat and barley.
    [Show full text]
  • Environmental Factors That Contribute to the Maintenance of Cryptococcus Neoformans Pathogenesis
    microorganisms Review Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis Maphori Maliehe, Mathope A. Ntoi, Shayanki Lahiri, Olufemi S. Folorunso , Adepemi O. Ogundeji , Carolina H. Pohl and Olihile M. Sebolai * Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, Free State, South Africa; [email protected] (M.M.); [email protected] (M.A.N.); [email protected] (S.L.); [email protected] (O.S.F.); [email protected] (A.O.O.); [email protected] (C.H.P.) * Correspondence: [email protected]; Tel.: +27-(0)51-401-2004 Received: 15 November 2019; Accepted: 11 December 2019; Published: 28 January 2020 Abstract: The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly. Keywords: Cryptococcus; environmental factors; pathogenesis; survival; virulence factors; transcriptional factors; signalling factors 1. Introduction The genus Cryptococcus is defined by basidiomycetous fungi that can transform into a yeast state [1].
    [Show full text]
  • Wheat Ear Sprays for Disease and Mycotoxin Control
    Topic Sheet No. 58 Summer 2002 Wheat ear sprays for disease and mycotoxin control Fusarium ear blight losses due to diseases caused by Five main species of fungi are these fungi and the mycotoxins responsible for ear blight in the they produce.While F. avenaceum UK.While all can reduce yield and F. poae are rarely important, and/or quality, only the Fusarium they can produce mycotoxins that species produce mycotoxins are even more potent than NIV (Table 1). or DON. The prevalence of ear diseases HGCA is funding surveys of varies considerably with location Fusarium mycotoxins in UK grain and year. Incidence and severity and to date, risk of contamination have increased in recent years appears to be low. (Figure 1). Wet weather at EU legislation, which already sets flowering is critical for disease limits for some mycotoxins development. produced by storage fungi, is likely Action: Fusarium graminearum and to be extended to include F. culmorum produce several mycotoxins produced by Fusarium Avoid growing highly mycotoxins including species. Grain containing toxin susceptible varieties in areas above these levels could be with a history of ear disease. deoxynivalenol (DON) and nivalenol (NIV), which are difficult or impossible to sell. Prepare to spray immediately harmful if consumed by humans if the weather is wet at and animals. Fungicide testing and flowering. choice Use fungicide mixtures to Mycotoxin risk In three years of HGCA-funded help control toxin-producing experiments, susceptible winter and non-toxin producing fungi. Mycotoxin formation in grain depends upon the predominant wheat varieties were grown at Use mixtures of fungicides species, temperature and other three sites.
    [Show full text]