NORWEGIAN JOURNAL OF GEOLOGY Vol XX Nr. XX https://dx.doi.org/10.17850/njg002 Fluid flow properties of the Wilhelmøya Subgroup, a potential unconventional CO2 storage unit in central Spitsbergen Mark Joseph Mulrooney1,2, Leif Larsen3, Jeroen Van Stappen4, Bjarte Rismyhr1,5, Kim Senger1, Alvar Braathen2, Snorre Olaussen1, Mai Britt E. Mørk6, Kei Ogata7 & Veerle Cnudde4 1Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway. 2Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway. 3Department of Petroleum Engineering, University in Stavanger, P.O. Box 8600, Forus, 4036 Stavanger, Norway. 4Department of Geology, PProGRess-UGCT, Ghent University, Krijgslaan 281/S8, B–9000, Belgium 5Department of Earth Science, University of Bergen, P.O. Box 7803, N–5020 Bergen, Norway. 6Department of Geoscience and Petroleum, Norwegian University of Science and Technology, N–7491 Trondheim, Norway. 7Faculty of Earth and Life Sciences, Geology and Geochemistry cluster, VU Amsterdam, De Boelelaan 1085–1087, 1081 HV Amsterdam, Netherlands. E-mail corresponding author (Mark Joseph Mulrooney):
[email protected] The Upper Triassic to Middle Jurassic Wilhelmøya Subgroup forms one of the more suitable reservoir units on the Norwegian Arctic archipelago of Svalbard. The target siliciclastic storage unit, which is encountered at approx. 670 m depth at the potential injection site in Adventdalen, central Spitsbergen, is a severely under-pressured (at least 35 bar), tight and compartmentalised reservoir with significant contribution of natural fractures to permeability. In this contribution, we characterise the 15–24 m-thick Wilhelmøya Subgroup storage unit using both borehole and outcrop data and present water-injection test results that indicate the presence of fluid-flow barriers and the generation of new, and propagation of pre-existing natural fractures during injection.