Structural Development Along the Billefjorden Fault Zone in the Area Between Kjellstromdalen and Adventdalen/Sassendalen, Central Spitsbergen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbok07.Pdf
- . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? .... -
Petroleum, Coal and Research Drilling Onshore Svalbard: a Historical Perspective
NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 3 https://dx.doi.org/10.17850/njg99-3-1 Petroleum, coal and research drilling onshore Svalbard: a historical perspective Kim Senger1,2, Peter Brugmans3, Sten-Andreas Grundvåg2,4, Malte Jochmann1,5, Arvid Nøttvedt6, Snorre Olaussen1, Asbjørn Skotte7 & Aleksandra Smyrak-Sikora1,8 1Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway. 2Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 3The Norwegian Directorate of Mining with the Commissioner of Mines at Svalbard, P.O. Box 520, 9171 Longyearbyen, Norway. 4Department of Geosciences, University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 5Store Norske Spitsbergen Kulkompani AS, P.O. Box 613, 9171 Longyearbyen, Norway. 6NORCE Norwegian Research Centre AS, Fantoftvegen 38, 5072 Bergen, Norway. 7Skotte & Co. AS, Hatlevegen 1, 6240 Ørskog, Norway. 8Department of Earth Science, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway. E-mail corresponding author (Kim Senger): [email protected] The beginning of the Norwegian oil industry is often attributed to the first exploration drilling in the North Sea in 1966, the first discovery in 1967 and the discovery of the supergiant Ekofisk field in 1969. However, petroleum exploration already started onshore Svalbard in 1960 with three mapping groups from Caltex and exploration efforts by the Dutch company Bataaffse (Shell) and the Norwegian private company Norsk Polar Navigasjon AS (NPN). NPN was the first company to spud a well at Kvadehuken near Ny-Ålesund in 1961. -
Terrestrial Inputs Govern Spatial Distribution of Polychlorinated Biphenyls (Pcbs) and Hexachlorobenzene (HCB) in an Arctic Fjord System (Isfjorden, Svalbard)*
Environmental Pollution 281 (2021) 116963 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)* * Sverre Johansen a, b, c, Amanda Poste a, Ian Allan c, Anita Evenset d, e, Pernilla Carlsson a, a Norwegian Institute for Water Research, Tromsø, Norway b Norwegian University of Life Sciences, Ås, Norway c Norwegian Institute for Water Research, Oslo, Norway d Akvaplan-niva, Tromsø, Norway e UiT, The Arctic University of Norway, Tromsø, Norway article info abstract Article history: Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Received 20 July 2020 Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to Received in revised form ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This 11 March 2021 study has investigated how secondary sources of POPs from land influence the occurrence and fate of Accepted 13 March 2021 POPs in an Arctic coastal marine system. Available online 17 March 2021 Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out Keywords: Particle transport in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant < S e Terrestrial runoff concentrations ( level of detection-28 pg/g dw PCB14,16 100 pg/g dw HCB) compared to outer marine Environmental contaminants sediments 630-880 pg/g dw SPCB14,530e770 pg/g dw HCB). -
The History of Exploration and Stratigraphy of the Early to Middle Triassic Vertebrate-Bearing Strata of Svalbard (Sassendalen Group, Spitsbergen)
NORWEGIAN JOURNAL OF GEOLOGY Vol 98 Nr. 2 https://dx.doi.org/10.17850/njg98-2-04 The history of exploration and stratigraphy of the Early to Middle Triassic vertebrate-bearing strata of Svalbard (Sassendalen Group, Spitsbergen) Jørn H. Hurum1, Victoria S. Engelschiøn3,1, Inghild Økland1, Janne Bratvold1, Christina P. Ekeheien1, Aubrey J. Roberts1,2, Lene L. Delsett1, Bitten B. Hansen1, Atle Mørk3, Hans A. Nakrem1, Patrick S. Druckenmiller4 & Øyvind Hammer1 1Natural History Museum, P.O. Box 1172 Blindern, NO–0318 Oslo, Norway. 2The Natural History Museum, Earth Sciences, Cromwell Road, London SW7 5BD, UK. 3Department of Geoscience and Petroleum, Norwegian University of Sciences and Technology, NO–7491 Trondheim, Norway. 4University of Alaska Museum and Department of Geology and Geophysics, University of Alaska Fairbanks, 907 Yukon Dr., Fairbanks, Alaska, 99775, USA. E-mail corresponding author (Jørn H. Hurum): [email protected] The palaeontology of the Lower to Middle Triassic succession in Spitsbergen has been studied for more than a century and a half. Our ability to properly interpret the evolutionary and ecological implications of the faunas requires precise stratigraphic control that has only recently become available. Within such a detailed stratigraphic framework, the Spitsbergen fossil material promises to contribute to our understanding of the faunal recovery after the end-Permian mass extinction. Keywords: Triassic stratigraphy, Boreal, Spitsbergen, Svalbard, Ichthyopterygia, Sedimentology, Mass extinction, Marmierfjellet, Vikinghøgda, Deltadalen, Botneheia, Olenekian, Anisian, Smithian, Spathian Received 23. November 2017 / Accepted 7. August 2018 / Published online 4. October 2018 Introduction waning stages of the Palaeozoic (Burgess et al., 2017). A direct result of this was the formation of the Siberian Traps (Yin & Song, 2013; Burgess et al., 2017). -
The Magnetobiostratigraphy of the Middle Triassic and the Latest Early Triassic from Spitsbergen, Arctic Norway Mark W
Intercalibration of Boreal and Tethyan time scales: the magnetobiostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway Mark W. Hounslow,1 Mengyu Hu,1 Atle Mørk,2,6 Wolfgang Weitschat,3 Jorunn Os Vigran,2 Vassil Karloukovski1 & Michael J. Orchard5 1 Centre for Environmental Magnetism and Palaeomagnetism, Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK 2 SINTEF Petroleum Research, NO-7465 Trondheim, Norway 3 Geological-Palaeontological Institute and Museum, University of Hamburg, Bundesstrasse 55, DE-20146 Hamburg, Germany 5 Geological Survey of Canada, 101-605 Robson Street, Vancouver, BC, V6B 5J3, Canada 6 Department of Geology and Mineral Resources Engineering, Norwegian University of Sciences and Technology, NO-7491 Trondheim, Norway Keywords Abstract Ammonoid biostratigraphy; Boreal; conodonts; magnetostratigraphy; Middle An integrated biomagnetostratigraphic study of the latest Early Triassic to Triassic. the upper parts of the Middle Triassic, at Milne Edwardsfjellet in central Spitsbergen, Svalbard, allows a detailed correlation of Boreal and Tethyan Correspondence biostratigraphies. The biostratigraphy consists of ammonoid and palynomorph Mark W. Hounslow, Centre for Environmental zonations, supported by conodonts, through some 234 m of succession in two Magnetism and Palaeomagnetism, adjacent sections. The magnetostratigraphy consists of 10 substantive normal— Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 reverse polarity chrons, defined by sampling at 150 stratigraphic levels. The 4YQ, UK. E-mail: [email protected] magnetization is carried by magnetite and an unidentified magnetic sulphide, and is difficult to fully separate from a strong present-day-like magnetization. doi:10.1111/j.1751-8369.2008.00074.x The biomagnetostratigraphy from the late Olenekian (Vendomdalen Member) is supplemented by data from nearby Vikinghøgda. -
Implications for Ice Extent and Volume
RESEARCH ARTICLE GEOLOGICAL NOTE A buried late MIS 3 shoreline in northern Norway — implications for ice extent and volume Lars Olsen Geological Survey of Norway, 7491 Trondheim, Norway. [email protected] Buried beach gravel in northern Norway represents a late Middle Weichselian/Marine Isotope Stage (MIS) 3 shoreline and indicates a significant late MIS 3 ice retreat. An age of c. 50–31 cal ka BP, or most likely c. 35–33 cal ka BP, obtained on shells, stratigraphical evidence and comparisons between local and global sea-level data, indicate a local/regional glacioisostatic depression which was about 50–70% of that of the Younger Dryas interval. This suggests a late MIS 3 ice thickness/ volume similar to or less than during the last part of the Preboreal, during which only minor or isolated remnants of the inland ice remained. Keywords: northern Norway, MIS 3, Scandinavian ice sheet, glacioisostacy Introduction maximum ice margin (Figure 1). Additional data, including sedimentary stratigraphy and dates from both coastal and inland The extension of the glaciers in the western part of the locations, indicate a much more extensive late MIS 3 ice retreat Scandinavian Ice Sheet during the Marine Isotope Stage (MIS) in most parts of Norway (e.g., Olsen et al. 2001a, b). However, 3 ice advance at c. 45 cal ka BP reached beyond the coastline the stratigraphic correlations between sites and between regions in SW Norway (e.g., Larsen et al. 1987). The subsequent ice are often hampered by dates of low precision and accuracy, which retreat, prior to the Last Glacial Maximum (LGM), has been imply an uncertain location of the ice margin at each step in time discussed based on the distribution of sites which indicate ice- and therefore also an uncertain minimum ice extension. -
Early Cenozoic Eurekan Strain Partitioning and Decoupling in Central Spitsbergen, Svalbard
Solid Earth, 12, 1025–1049, 2021 https://doi.org/10.5194/se-12-1025-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard Jean-Baptiste P. Koehl1,2,3,4 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway 2Department of Geosciences, UiT The Arctic University of Norway in Tromsø, 9037 Tromsø, Norway 3Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø, 9037 Tromsø, Norway 4CAGE – Centre for Arctic Gas Hydrate, Environment and Climate, 9037 Tromsø, Norway Correspondence: Jean-Baptiste P. Koehl ([email protected]) Received: 30 September 2020 – Discussion started: 19 October 2020 Revised: 22 March 2021 – Accepted: 6 April 2021 – Published: 10 May 2021 Abstract. The present study of field, petrological, explo- Group and Mimerdalen Subgroup might be preserved east ration well, and seismic data describes backward-dipping of the Billefjorden Fault Zone, suggesting that the Billefjor- duplexes comprised of phyllitic coal and bedding-parallel den Fault Zone did not accommodate reverse movement in décollements and thrusts localized along lithological tran- the Late Devonian. Hence, the thrusting of Proterozoic base- sitions in tectonically thickened Lower Devonian to lower- ment rocks over Lower Devonian sedimentary rocks along most Upper Devonian; uppermost Devonian–Mississippian; the Balliolbreen Fault and fold structures within strata of the and uppermost Pennsylvanian–lowermost Permian sedimen- Andrée Land Group and Mimerdalen Subgroup in central tary strata of the Wood Bay and/or Wijde Bay and/or Spitsbergen may be explained by a combination of down-east Grey Hoek formations; of the Billefjorden Group; and Carboniferous normal faulting with associated footwall rota- of the Wordiekammen Formation, respectively. -
Upper Triassic–Middle Jurassic) in Western Central Spitsbergen, Svalbard
NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 2 https://dx.doi.org/10.17850/njg001 Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic–Middle Jurassic) in western central Spitsbergen, Svalbard Bjarte Rismyhr1,2, Tor Bjærke3, Snorre Olaussen2, Mark Joseph Mulrooney2,4 & Kim Senger2 1 Department of Earth Science, University of Bergen, P.O. Box 7803, N–5020 Bergen, Norway. 2Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway. 3Applied Petroleum Technology AS, P.O. Box 173, Kalbakken, 0903 Oslo. 4Department of Geoscience, University of Oslo, P.O. Box 1047 Blindern, 0316 Oslo, Norway. E-mail corresponding author (Bjarte Rismyhr): [email protected] The Wilhelmøya Subgroup (Norian–Bathonian) is considered as the prime storage unit for locally produced CO2 in Longyearbyen on the Arctic archipelago of Svalbard. We here present new drillcore and outcrop data and refined sedimentological and sequence-stratigraphic interpretations from western central Spitsbergen in and around the main potential CO2-storage area. The Wilhelmøya Subgroup encompasses a relatively thin (15–24 m) siliciclastic succession of mudstones, sandstones and conglomerates and represents an unconventional potential reservoir unit due to its relatively poor reservoir properties, i.e., low-moderate porosity and low permeability. Thirteen sedimentary facies were identified in the succession and subsequently grouped into five facies associations, reflecting deposition in various marginal marine to partly sediment-starved, shallow shelf environments. Palynological analysis was performed to determine the age and aid in the correlation between outcrop and subsurface sections. The palynological data allow identification of three unconformity-bounded sequences (sequence 1–3). -
The Hydrochemical Characteristics of the Northern Part of Wedel Jarlsberg Land
Stefan Bartoszewski, Zdzisław Michalczyk Wyprawy Geograficzne na Spitsbergen Institute of Earth Sciences UMCS, Lublin 1991 Maria Curie-Sklodowska University Lublin, Poland Jan Magierski Institute of Soil Sciences Agricultural College Lublin, Poland THE HYDROCHEMICAL CHARACTERISTICS OF THE NORTHERN PART OF WEDEL JARLSBERG LAND In 1986-1990 the hydrological and hydrochemical studies were carried out on Spitsbergen during the Geographical Expeditions, UMCS. The field studies took place in the northern area of Wedel Jarlsberg Land bordered by the Bellsund coast in the West and Van Keulen Fiord in the North as well as the Dunder Valley in the South. The aim of the studies were hydrological and hydrochemical features of the area. The collected material was used for the preliminary characteristics of spatial and seasonal differentiations of physicochemical properties of water in different circulation phases: rainfall, glacial, surface and underground waters. The hydrochemical map (Fig. 1) presents the cartographic picture of different water qualities. Besides glaciers and mountain ridges, it shows the course of isoline of the water mineralization 100 mg/1 and water chemical structure. The water chemical structure was also presented in the records (Tables 1,2). PROFILES OF GEOLOGICAL STRUCTURE AND RELIEF The western part of the studied area is built of rocks of the Upper Proterozoic and Lower Paleozoic making the Hecla Hoek geological formation (Flood et. al. 1971, Dallmaun et. al 1990). The forms of the older foundation are strongly, tectonically disordered. Besides faults and thursts of WNW-SSE and NW-SE directions there are numerous folds. The geological configuration is close to the southern direction (Ohta 1982). -
Protected Areas in Svalbard – Securing Internationally Valuable Cultural and Natural Heritage Contents Preface
Protected areas in Svalbard – securing internationally valuable cultural and natural heritage Contents Preface ........................................................................ 1 – Moffen Nature Reserve ......................................... 13 From no-man’s-land to a treaty and the Svalbard – Nordaust-Svalbard Nature Reserve ...................... 14 Environmental Protection Act .................................. 4 – Søraust-Svalbard Nature Reserve ......................... 16 The history of nature and cultural heritage – Forlandet National Park .........................................18 protection in Svalbard ................................................ 5 – Indre Wijdefjorden National Park ......................... 20 The purpose of the protected areas .......................... 6 – Nordenskiöld Land National Park ........................ 22 Protection values ........................................................ 7 – Nordre Isfjorden National Park ............................ 24 Nature protection areas in Svalbard ........................10 – Nordvest-Spitsbergen National Park ................... 26 – Bird sanctuaries ..................................................... 11 – Sassen-Bünsow Land National Park .................... 28 – Bjørnøya Nature Reserve ...................................... 12 – Sør-Spitsbergen National Park ..............................30 – Ossian Sars Nature Reserve ................................. 12 Svalbard in a global context ..................................... 32 – Hopen Nature Reserve -
Svalbard 2015–2016 Meld
Norwegian Ministry of Justice and Public Security Published by: Norwegian Ministry of Justice and Public Security Public institutions may order additional copies from: Norwegian Government Security and Service Organisation E-mail: [email protected] Internet: www.publikasjoner.dep.no KET T Meld. St. 32 (2015–2016) Report to the Storting (white paper) Telephone: + 47 222 40 000 ER RY M K Ø K J E L R I I Photo: Longyearbyen, Tommy Dahl Markussen M 0 Print: 07 PrintMedia AS 7 9 7 P 3 R 0 I 1 08/2017 – Impression 1000 N 4 TM 0 EDIA – 2 Svalbard 2015–2016 Meld. St. 32 (2015–2016) Report to the Storting (white paper) 1 Svalbard Meld. St. 32 (2015–2016) Report to the Storting (white paper) Svalbard Translation from Norwegian. For information only. Table of Contents 1 Summary ........................................ 5 6Longyearbyen .............................. 39 1.1 A predictable Svalbard policy ........ 5 6.1 Introduction .................................... 39 1.2 Contents of each chapter ............... 6 6.2 Areas for further development ..... 40 1.3 Full overview of measures ............. 8 6.2.1 Tourism: Longyearbyen and surrounding areas .......................... 41 2Background .................................. 11 6.2.2 Relocation of public-sector jobs .... 43 2.1 Introduction .................................... 11 6.2.3 Port development ........................... 44 2.2 Main policy objectives for Svalbard 11 6.2.4 Svalbard Science Centre ............... 45 2.3 Svalbard in general ........................ 12 6.2.5 Land development in Longyearbyen ................................ 46 3 Framework under international 6.2.6 Energy supply ................................ 46 law .................................................... 17 6.2.7 Water supply .................................. 47 3.1 Norwegian sovereignty .................. 17 6.3 Provision of services ..................... -
Sea Ice Cover in Isfjorden and Hornsund, Svalbard (2000-2014) from Remote Sensing Data S
Manuscript prepared for J. Name with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls. Date: 3 December 2015 Sea ice cover in Isfjorden and Hornsund, Svalbard (2000-2014) from remote sensing data S. Muckenhuber1, F. Nilsen2,3, A. Korosov1, and S. Sandven1 1Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47, 5006 Bergen, Norway 2University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway 3Geophysical Institute, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway Correspondence to: S. Muckenhuber ([email protected]) Abstract. A satellite database including 16 555 satellite images and ice charts displaying the area of Isfjorden, Hornsund and the Svalbard region has been established with focus on the time period 2000–2014. 3319 manual interpretations of sea ice conditions have been conducted, resulting in two time series dividing the area of Isfjorden and Hornsund into “Fast ice” (sea ice attached to the coast- 5 line), “Drift ice” and “Open water”. The maximum fast ice coverage of Isfjorden is > 40 % in the periods 2000–2005 and 2009–2011 and stays < 30 % in 2006–2008 and 2012–2014. Fast ice cover in Hornsund reaches > 40 % in all considered years, except for 2012 and 2014, where the maximum stays < 20 %. The mean seasonal cycles of fast ice in Isfjorden and Hornsund show monthly aver- aged values of less than 1 % between July and November and maxima in March (Isfjorden, 35.7 %) 10 and April (Hornsund, 42.1 %) respectively. A significant reduction of the monthly averaged fast ice coverage is found when comparing the time periods 2000–2005 and 2006–2014.