Applications of Microarrays with Toxicologically Relevant Genes (Tox
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 8,921,361 B2 Cmiljanovic Et Al
USOO892.1361 B2 (12) United States Patent (10) Patent No.: US 8,921,361 B2 Cmiljanovic et al. (45) Date of Patent: Dec. 30, 2014 (54) TRIAZINE, PYRIMIDINE AND PYRIDINE 409/04 (2013.01); C07D 413/04 (2013.01); ANALOGS AND THEIR USEAS C07D 413/14 (2013.01); C07D 417/04 THERAPEUTICAGENTS AND DAGNOSTIC (2013.01); C07D 417/14 (2013.01); C07D PROBES 491/048 (2013.01); C07D491/147 (2013.01); C07D 495/04 (2013.01); C07D 495/14 (2013.01); C07D498/04 (2013.01); C07D (75) Inventors: Vladimir Cmiljanovic, Basel (CH): 513/04 (2013.01); C07D 519/00 (2013.01) Natasa Cmiljanovic, Basel (CH); Bernd USPC .......................................... 514/232.2:544/83 Giese, Fribourg (CH); Matthias (58) Field of Classification Search Wymann, Bern (CH) None See application file for complete search history. (73) Assignee: University of Basel, Basel (CH) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS U.S.C. 154(b) by 60 days. 5,489,591 A * 2/1996 Kobayashi et al. ........... 514,245 (21) Appl. No.: 13/128,436 7,173,029 B2 2/2007 Hayakawa et al. 8,217,036 B2 * 7/2012 Venkatesan et al. ....... 514,232.2 (22) PCT Filed: Nov. 10, 2009 2010 OO69629 A1 3/2010 Shimma et al. (86). PCT No.: PCT/B2O09/OOT404 FOREIGN PATENT DOCUMENTS EP 1864 665 A1 12/2007 S371 (c)(1), WO 2005/028444 A1 3, 2005 (2), (4) Date: Jul. 1, 2011 WO 2007 1271.75 A2 11/2007 WO 2008/O18426 A1 2, 2008 (87) PCT Pub. -
ECETOC Guidance on Dose Selection
ECETOC Guidance on Dose Selection Technical Report No. 138 EUROPEAN CENTRE OFOR EC TOXICOLOGY AND TOXICOLOGY OF CHEMICALS ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Technical Report No. 138 Brussels, March 2021 ISSN-2079-1526-138 (online) ECETOC TR No. 138 1 ECETOC Guidance on Dose Selection 224504 ECETOC Technical Report No. 138 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals Rue Belliard 40, B-1040 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 138 2 ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Table of Contents 1. SUMMARY 6 2. INTRODUCTION, BACKGROUND AND PRINCIPLES 9 2.1. Background and Principles 9 2.2. Current Regulatory Framework and Guidance 10 2.2.1. Historical perspectives and the evolution of test guidelines 10 2.2.2. -
Interaction Profile
INTERACTION PROFILE FOR: PERSISTENT CHEMICALS FOUND IN FISH (CHLORINATED DIBENZO-p-DIOXINS, HEXACHLOROBENZENE, p,p’-DDE, METHYLMERCURY, and POLYCHLORINATED BIPHENYLS) U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry May 2004 iii ACKNOWLEDGMENT The Agency for Toxic Substances and Disease Registry (ATSDR) wishes to thank the U.S. Environmental Protection Agency (EPA) for its support in the production of this Interaction Profile. v PREFACE The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) mandates that the Agency for Toxic Substances and Disease Registry (ATSDR) shall assess whether adequate information on health effects is available for the priority hazardous substances. Where such information is not available or under development, ATSDR shall, in cooperation with the National Toxicology Program, initiate a program of research to determine these health effects. The Act further directs that where feasible, ATSDR shall develop methods to determine the health effects of substances in combination with other substances with which they are commonly found. To carry out the legislative mandate, ATSDR’s Division of Toxicology (DT) has developed and coordinated a mixtures program that includes trend analysis to identify the mixtures most often found in environmental media, in vivo and in vitro toxicological testing of mixtures, quantitative modeling of joint action, and methodological development for assessment of joint toxicity. These efforts are interrelated. For example, the trend analysis suggests mixtures of concern for which assessments need to be conducted. If data are not available, further research is recommended. The data thus generated often contribute to the design, calibration or validation of the methodology. -
Comparison of Selected in Vitro Assays for Assessing the Toxicity of Chemicals and Their Mixtures
COMPARISON OF SELECTED IN VITRO ASSAYS FOR ASSESSING THE TOXICITY OF CHEMICALS AND THEIR MIXTURES Rola Azzi A thesis submitted for the degree of Doctor of Philosophy Chemical Safety and Applied Toxicology Laboratories School of Safety Science Faculty of Science The University of New South Wales June 2006 Certificate of Originality Certificate of Originality I hereby declare that this submission is my own work and that, to the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any degree at UNSW or any other education institution, except where due acknowledgment is made in the thesis. Any contributions made to the research by others, which whom I have worked, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. Rola Azzi June 2006 i Acknowledgments Acknowledgments I would like to express my sincerest gratitude to my supervisor Dr Amanda Hayes for her assistance, constant encouragement and expertise. Without her support and guidance this project would not have been possible. I am also grateful to Associate Professor Chris Winder, for his constant support, advice, and scientific expertise throughout my work on this project. I would also like to express my sincerest gratitude and appreciation to my uncle, Associate Professor Rachad Saliba, who was a constant support during the writing of this thesis, and was devoted to helping me grasp the science of statistics, and its ability to transform numbers into a story. -
Toxicological Profile for Zinc
TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486). -
Toxicological Profile for Copper
TOXICOLOGICAL PROFILE FOR COPPER U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2004 COPPER ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. COPPER iii UPDATE STATEMENT A Toxicological Profile for Copper, Draft for Public Comment was released in September 2002. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, Mailstop F-32 Atlanta, Georgia 30333 COPPER vii QUICK REFERENCE FOR HEALTH CARE PROVIDERS Toxicological Profiles are a unique compilation of toxicological information on a given hazardous substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation of available toxicologic and epidemiologic information on a substance. Health care providers treating patients potentially exposed to hazardous substances will find the following information helpful for fast answers to often-asked questions. Primary Chapters/Sections of Interest Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating patients about possible exposure to a hazardous substance. It explains a substance’s relevant toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of the general health effects observed following exposure. Chapter 2: Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, and assesses the significance of toxicity data to human health. -
(GIVIMP) for the Development and Implementation of in Vitro Methods for 829 Regulatory Use in Human Safety Assessment
1 2 Draft GUIDANCE DOCUMENT ON GOOD IN VITRO METHOD PRACTICES (GIVIMP) 3 FOR THE DEVELOPMENT AND IMPLEMENTATION OF IN VITRO METHODS FOR 4 REGULATORY USE IN HUMAN SAFETY ASSESSMENT 5 6 FOREWORD 7 8 A guidance document on Good In Vitro Method Practices (GIVIMP) for the development and 9 implementation of in vitro methods for regulatory use in human safety assessment was 10 identified as a high priority requirement. The aim is to reduce the uncertainties in cell and 11 tissue-based in vitro method derived predictions by applying all necessary good scientific, 12 technical and quality practices from in vitro method development to in vitro method 13 implementation for regulatory use. 14 The draft guidance is coordinated by the European validation body EURL ECVAM and has 15 been accepted on the work plan of the OECD test guideline programme since April 2015 as a 16 joint activity between the Working Group on Good Laboratory Practice (GLP) and the 17 Working Group of the National Coordinators of the Test Guidelines Programme (WNT). 18 The draft document prepared by the principal co-authors has been sent in September 2016 to 19 all 37 members of the European Union Network of Laboratories for the Validation of 20 Alternative Methods (EU-NETVAL1) and has been subsequently discussed at the EU- 21 NETVAL meeting on the 10th of October 2016. 22 By November/December 2016 the comments of the OECD Working Group on GLP and 23 nominated experts of the OECD WNT will be forwarded to EURL ECVAM who will 24 incorporate these and prepare an updated version. -
“Six-Pack” Testing Strategy: Influx of Modern in Vitro Techniques Gertrude-Emilia Costin, Ph.D., M.B.A
Modernizing the “six-pack” testing strategy: influx of modern in vitro techniques Gertrude-Emilia Costin, Ph.D., M.B.A. Institute for In Vitro Sciences, Inc. (IIVS) NorCal SOT Fall Symposium 2017 The 3Rs 28 September 2017, San Francisco, CA, USA Perspectives, challenges, common goals and working together Safety/ Testing Labs Labeling/ Industry/ Regulatory Manufacturer Agency Consumer/ End-user Safety Presentation Outline Current regulatory climate – global acceptance of in vitro methods The reductionist concept of in vitro methods Drivers of in vitro methods advancement Beyond the “six-pack” battery of acute toxicity tests Acute oral toxicity Acute dermal toxicity (oral vs dermal route comparison) Acute inhalation toxicity Ocular irritation (the EPA OPP testing strategy) Skin irritation/corrosion Skin sensitization Modernizing the “six-pack” testing strategy: influx of modern in vitro techniques Current regulatory climate – global acceptance of in vitro methods The reductionist concept of in vitro models 1940s 1990s Whole animal Organ - Eyeball Tissue - Cornea Cell culture (Rabbit) (Enucleated chicken or (Resected bovine (Statens Seruminstitut rabbit eye) cornea) Rabbit cornea cells) “Less is more” Retinal Pigment Epithelium Semi-permeable Membrane Vascular network Nutrient channels Fibrinogen- endothelial cell administration channel Body-on-a-chip Organ-on-a-chip Tissue construct Cell culture (Human organotypic (Human retina) (Human EpiCorneal™ (Normal human microtissues) model) corneal epithelial cells) 2010s 2000s G.-E. Costin and H. A. Raabe. In vitro toxicology models. In: The Role of the Study Director in Non-clinical Studies. Pharmaceuticals, Chemicals, Medical Devices, and Pesticides. (Eds. William Brock, Barbara Mounho and Lijie Fu), John Wiley and Sons (2014). G.-E. Costin. -
Mitomycin C in the Treatment of Chronic Myelogenous Leukemia
Nagoya ]. med. Sci. 29: 317-344, 1967. MITOMYCIN C IN THE TREATMENT OF CHRONIC MYELOGENOUS LEUKEMIA AKIRA HosHINo 1st Department of Internal Medicine Nagoya University School oj Medicine (Director: Prof. Susumu Hibino) SUMMARY Studies made of the treatment with 66 courses of mitomycin C in 28 patients with chronic myelogenous leukemia are reported. The effect of mitomycin C was investigated according to the relation between drug and host factors, comparison with the effects of other agents, and drug resistance. Patients with less hematological and clinical symptoms responded better to mitomycin C therapy. The remission rate of cases treated intravenously with mitomycin C was 93.8% and of cases treated orally with mitomycin C was 72.0%. The remission rate of the total cases (intravenous and oral) treated with mitomycin C was 77.3%. The therapeutic effect of mitomycin C is considered to be equal or be somewhat superior to the effect of busulfan as a result of data on the occurrence of resistance, cross resistance, development of acute blastic crisis and life span. Busulfan was effective in patients resistant to mitomycin C, and mitomycin C did not clinically show cross resistance to alkylating agents. Two patients resist· ant to mitomycin C recovered the sensitivity to mitomycin C after treatment with busulfan or 6-mercaptopurine. Side effects were observed in 39.4% of 66 cases, but severe side effect causing suspension of mitomycin C was rare. I. INTRODUCTION Human leukemia serves as a useful investigative model in which the de finite effect of anti-cancer agents can be evaluated quantitatively by factors such as the improvement of hematological findings and clinical symptoms, the remission rate, and the prologation of life span. -
Cross-Linking of DNA by Alkylating Agents and Effects on DNA Function in the Chick Embryo
(CANCER RESEARCH 31, 1573-1579, November 1971] Cross-linking of DNA by Alkylating Agents and Effects on DNA Function in the Chick Embryo Jerome J. McCann, Timothy M. Lo, and D. A. Webster Department of Biology, Illinois Institute of Technology, Chicago, Illinois 60616 SUMMARY single-stranded DNA partitions into the dextran-rich lower phase (3). This assay has been used to demonstrate that many Drug-induced cross-links are found in the DNA of chick preparations of DNA normally contain some cross-linked embryos within 6 hr after injection of mitomycin C and DNA, which was postulated to arise when DNA is sheared methyl-di-(2-chloroethyl)amine into the egg and 24 hr after during purification (2, 3). In Escherichia coli, an enzyme injection of triethylene thiophosphoramide. Effects on the system, consisting of an exonuclease and a ligase, has been rates of synthesis of DNA, RNA, and protein were studied shown to cross-link DNA terminally (25). with chemical assays for total content of these When difunctional alkylating agents were injected onto the macromolecules as well as radioactive precursor incorporation. area vasculosa of 4-day chick embryos in ovo, within 24 hr a All three drugs inhibited DNA synthesis before RNA and specific type of macrophage was formed over the entire protein synthesis were affected, but there were discrepancies embryo (24). These macrophages were indistinguishable by between the two methods of measuring macromolecular light and electron microscopy from macrophages which are synthesis; thus, radioactive precursor incorporation is not formed during the process of "programmed cell death," a always a reliable measurement of macromolecular synthesis in phenomenon believed important for sculpturing the normal the chick embryo. -
Supplementary Table S1 Cell-Based Inhibitory Activity Data of 88
Supplementary Table S1 Cell‐based inhibitory activity data of 88 anticancer drugs. For drugs with multiple cancer cell‐line inhibition data, the best activity is listed. Drug Cell line GI50/IC50 (nM) Reference (Pubmed ID ) 5‐azacytidine NCI‐H460 147.9 20442306 5‐fluorouracil OVCAR‐3 21.4 20442306 6‐Mercaptopurine K‐562 354.8 20442306 Actinomycin D SR 0.0019 20442306 Altretamine HOP‐18 60534.1 NCI standard agent database Anastrozole SK‐MEL‐2 100.0 20442306 Arsenic trioxide CCRF‐CEM 512.9 20442306 Bendamustine MOLT‐4 1148.2 20442306 Bleomycin MALME‐3M 2.9 20442306 Bortezomib RPMI‐8226 0.2 20442306 Busulfan LOX IMVI 6025.6 20442306 Capcitebine SK‐MEL‐2 10.0 20442306 Carboplatin KLE 240.0 8123477 Carmustine SW 1783 1524.1 NCI standard agent database Chlorambucil SR 812.8 20442306 Cisplatin SR 77.6 20442306 Cladribine HL60 8.7 9845378 Clofarabine CCRF‐CEM 10.0 20442306 Cyclophosphamide COLO 746 25.0 NCI standard agent database Cytarabine HCl CCRF‐CEM 6.0 20442306 Dacarbazine HL‐60(TB) 4168.7 20442306 Dasatinib K‐562 10.0 20442306 Daunorubicin MOLT‐4 2.8 20442306 Delta‐1‐testololactone HOP‐19 18793.2 NCI standard agent database Dimethyltestosterone RPMI‐8226 7585.8 20442306 Docetaxel NCI‐H522 0.1 20442306 Doxorubicin MOLT‐4 10.0 20442306 Dromostanolone HOP‐92 407.4 20442306 propionate Epirubicin SR 10.0 20442306 Erlotinib EKVX 53.7 20442306 Estramustine CCRF‐CEM 25.1 20442306 Ethacrynic acid Primary Chronic 8560.0 20011538 Lymphocytic Leukemia cells Ethinyl estradiol U251 7762.5 20442306 Etoposide MOLT‐4 195.0 20442306 Everolimus RPMI‐8226 -
In Vitro Toxicology Cytotoxicity and Mechanism
In vitro Toxicology Cytotoxicity and Mechanism Introduction ImQuest BioSciences offers a panel of in vitro assays to evaluate the cyto- toxicity and mechanism of cytotoxicity of potential pharmaceutical prod- ucts. In vitro cytotoxicity assays are used to predict the toxicity of com- pounds as well as to identify potential safety and development problems prior to in vivo safety and toxicology evaluations. Together with infor- mation on the drug candidate’s efficacy and pharmaceutical properties, the results may be used to select lead compounds that will be given pref- erence for progression to animal studies and IND-directed development. In addition, in vitro toxicity assays provide preliminary information about the mechanisms of toxicity likely to be observed during in vivo studies. To assess the effects of test compounds on cell viability, cell proliferation and macromolecule synthesis, ImQuest’s cytotoxicity evaluations are per- formed with a number of human immune system cell types and cell types representative of the major functional organ systems. Examples of these cell types include: peripheral blood mononuclear cells (PBMCs), mono- cyte-macrophages, dendritic cells, bone marrow progenitor cells, primary hepatocytes, induced pluripotent stem cell (iPS) cardiomyocytes, iPS neu- Technological advances rons and renal proximal tubule cells (RPTEC). have increased the effec- tiveness of in vitro toxi- Mechanism of cytotoxicity assays are used to evaluate the effect of test cology analysis: compounds on the cell cycle, mitochondrial respiration and function, Pluripotent stem cells apoptosis, membrane integrity and oxidative stress. These assays are that can be directed to used to analyze the predominant areas where a test compound may exert differentiate into various an adverse effect.