Mechanisms of Cell Toxicity and in Vitro Toxicology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HISTORY of LEAD POISONING in the WORLD Dr. Herbert L. Needleman Introduction the Center for Disease Control Classified the Cause
HISTORY OF LEAD POISONING IN THE WORLD Dr. Herbert L. Needleman Introduction The Center for Disease Control classified the causes of disease and death as follows: 50 % due to unhealthy life styles 25 % due to environment 25% due to innate biology and 25% due to inadequate health care. Lead poisoning is an environmental disease, but it is also a disease of life style. Lead is one of the best-studied toxic substances, and as a result we know more about the adverse health effects of lead than virtually any other chemical. The health problems caused by lead have been well documented over a wide range of exposures on every continent. The advancements in technology have made it possible to research lead exposure down to very low levels approaching the limits of detection. We clearly know how it gets into the body and the harm it causes once it is ingested, and most importantly, how to prevent it! Using advanced technology, we can trace the evolution of lead into our environment and discover the health damage resulting from its exposure. Early History Lead is a normal constituent of the earth’s crust, with trace amounts found naturally in soil, plants, and water. If left undisturbed, lead is practically immobile. However, once mined and transformed into man-made products, which are dispersed throughout the environment, lead becomes highly toxic. Solely as a result of man’s actions, lead has become the most widely scattered toxic metal in the world. Unfortunately for people, lead has a long environmental persistence and never looses its toxic potential, if ingested. -
Acute Poisoning: Understanding 90% of Cases in a Nutshell S L Greene, P I Dargan, a L Jones
204 REVIEW Postgrad Med J: first published as 10.1136/pgmj.2004.027813 on 5 April 2005. Downloaded from Acute poisoning: understanding 90% of cases in a nutshell S L Greene, P I Dargan, A L Jones ............................................................................................................................... Postgrad Med J 2005;81:204–216. doi: 10.1136/pgmj.2004.024794 The acutely poisoned patient remains a common problem Paracetamol remains the most common drug taken in overdose in the UK (50% of intentional facing doctors working in acute medicine in the United self poisoning presentations).19 Non-steroidal Kingdom and worldwide. This review examines the initial anti-inflammatory drugs (NSAIDs), benzodiaze- management of the acutely poisoned patient. Aspects of pines/zopiclone, aspirin, compound analgesics, drugs of misuse including opioids, tricyclic general management are reviewed including immediate antidepressants (TCAs), and selective serotonin interventions, investigations, gastrointestinal reuptake inhibitors (SSRIs) comprise most of the decontamination techniques, use of antidotes, methods to remaining 50% (box 1). Reductions in the price of drugs of misuse have led to increased cocaine, increase poison elimination, and psychological MDMA (ecstasy), and c-hydroxybutyrate (GHB) assessment. More common and serious poisonings caused toxicity related ED attendances.10 Clinicians by paracetamol, salicylates, opioids, tricyclic should also be aware that severe toxicity can result from exposure to non-licensed pharmaco- -
Toxicity Forecaster (Toxcasttm)
science in ACTION www.epa.gov/research INNOVATIVE RESEARCH FOR A SUSTAINABLE FUTURE Toxicity Forecaster (ToxCastTM) ADVANCING THE NEXT GENERATION OF CHEMICAL SAFETY EVALUATION Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Because current chemical testing is expensive and time consuming, only a small fraction of chemicals have been fully evaluated for potential human health effects. Through its computational toxicology research (CompTox), the U.S. Environmental Protection Agency (EPA) is working to figure out how to change the current approach used to evaluate the safety of chemicals. CompTox research integrates advances in biology, biotechnology, chemistry, and computer science to identify important biological processes that may be disrupted by the chemicals and tracing those biological the potential to limit the number of of sources; including industrial and disruptions to a related dose and required laboratory animal-based consumer products, food additives, human exposure. The combined toxicity tests while quickly and and potentially “green” chemicals information helps prioritize efficiently screening large numbers that could be safer alternatives to chemicals based on potential human of chemicals. existing chemicals. These 2,000 health risks. Using CompTox, chemicals were evaluated in over thousands of chemicals can be The first phase of ToxCast, 700 high-throughput assays that evaluated for potential risk at a small appropriately called “Proof of cover a range of high-level cell cost in a very short amount of time. Concept”, was completed in responses and approximately 2009 and it evaluated over 300 300 signaling pathways. ToxCast A major part of EPA’s CompTox well studied chemicals (primarily research is the Toxicity Forecaster research is ongoing to determine pesticides) in over 500 high- which assays under what conditions (ToxCast™). -
ECETOC Guidance on Dose Selection
ECETOC Guidance on Dose Selection Technical Report No. 138 EUROPEAN CENTRE OFOR EC TOXICOLOGY AND TOXICOLOGY OF CHEMICALS ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Technical Report No. 138 Brussels, March 2021 ISSN-2079-1526-138 (online) ECETOC TR No. 138 1 ECETOC Guidance on Dose Selection 224504 ECETOC Technical Report No. 138 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals Rue Belliard 40, B-1040 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 138 2 ECETOC Guidance on Dose Selection ECETOC Guidance on Dose Selection Table of Contents 1. SUMMARY 6 2. INTRODUCTION, BACKGROUND AND PRINCIPLES 9 2.1. Background and Principles 9 2.2. Current Regulatory Framework and Guidance 10 2.2.1. Historical perspectives and the evolution of test guidelines 10 2.2.2. -
TOXICOLOGY and EXPOSURE GUIDELINES ______(For Assistance, Please Contact EHS at (402) 472-4925, Or Visit Our Web Site At
(Revised 1/03) TOXICOLOGY AND EXPOSURE GUIDELINES ______________________________________________________________________ (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) "All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy." This early observation concerning the toxicity of chemicals was made by Paracelsus (1493- 1541). The classic connotation of toxicology was "the science of poisons." Since that time, the science has expanded to encompass several disciplines. Toxicology is the study of the interaction between chemical agents and biological systems. While the subject of toxicology is quite complex, it is necessary to understand the basic concepts in order to make logical decisions concerning the protection of personnel from toxic injuries. Toxicity can be defined as the relative ability of a substance to cause adverse effects in living organisms. This "relative ability is dependent upon several conditions. As Paracelsus suggests, the quantity or the dose of the substance determines whether the effects of the chemical are toxic, nontoxic or beneficial. In addition to dose, other factors may also influence the toxicity of the compound such as the route of entry, duration and frequency of exposure, variations between different species (interspecies) and variations among members of the same species (intraspecies). To apply these principles to hazardous materials response, the routes by which chemicals enter the human body will be considered first. Knowledge of these routes will support the selection of personal protective equipment and the development of safety plans. The second section deals with dose-response relationships. -
Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO
Pediatric Ethylene Glycol Ingestion Reviewer: Adam Pomerlau, MD Authors: Jeff Holmes, MD / Tammi Schaeffer, DO Target Audience: Emergency Medicine Residents, Medical Students Primary Learning Objectives: 1. Recognize signs and symptoms of ethylene glycol toxicity 2. Order appropriate laboratory and radiology studies in ethylene glycol toxicity 3. Recognize and interpret blood gas, anion gap, and osmolal gap in setting of TA ingestion 4. Differentiate the symptoms and signs of ethylene glycol toxicity from those associated with other toxic alcohols e.g. ethanol, methanol, and isopropyl alcohol Secondary Learning Objectives: detailed technical/behavioral goals, didactic points 1. Perform a mental status evaluation of the altered patient 2. Formulate independent differential diagnosis in setting of leading information from RN 3. Describe the role of bicarbonate for severe acidosis Critical actions checklist: 1. Obtain appropriate diagnostics 2. Protect the patient’s airway 3. Start intravenous fluid resuscitation 4. Initiate serum alkalinization 5. Initiate alcohol dehydrogenase blockade 6. Consult Poison Center/Toxicology 7. Get Nephrology Consultation for hemodialysis Environment: 1. Room Set Up – ED acute care area a. Manikin Set Up – Mid or high fidelity simulator, simulated sweat if available b. Airway equipment, Sodium Bicarbonate, Nasogastric tube, Activated charcoal, IV fluid, norepinephrine, Simulated naloxone, Simulate RSI medications (etomidate, succinylcholine) 2. Distractors – ED noise For Examiner Only CASE SUMMARY SYNOPSIS OF HISTORY/ Scenario Background The setting is an urban emergency department. This is the case of a 2.5-year-old male toddler who presents to the ED with an accidental ingestion of ethylene glycol. The child was home as the father was watching him. The father was changing the oil on his car. -
Interaction Profile
INTERACTION PROFILE FOR: PERSISTENT CHEMICALS FOUND IN FISH (CHLORINATED DIBENZO-p-DIOXINS, HEXACHLOROBENZENE, p,p’-DDE, METHYLMERCURY, and POLYCHLORINATED BIPHENYLS) U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry May 2004 iii ACKNOWLEDGMENT The Agency for Toxic Substances and Disease Registry (ATSDR) wishes to thank the U.S. Environmental Protection Agency (EPA) for its support in the production of this Interaction Profile. v PREFACE The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) mandates that the Agency for Toxic Substances and Disease Registry (ATSDR) shall assess whether adequate information on health effects is available for the priority hazardous substances. Where such information is not available or under development, ATSDR shall, in cooperation with the National Toxicology Program, initiate a program of research to determine these health effects. The Act further directs that where feasible, ATSDR shall develop methods to determine the health effects of substances in combination with other substances with which they are commonly found. To carry out the legislative mandate, ATSDR’s Division of Toxicology (DT) has developed and coordinated a mixtures program that includes trend analysis to identify the mixtures most often found in environmental media, in vivo and in vitro toxicological testing of mixtures, quantitative modeling of joint action, and methodological development for assessment of joint toxicity. These efforts are interrelated. For example, the trend analysis suggests mixtures of concern for which assessments need to be conducted. If data are not available, further research is recommended. The data thus generated often contribute to the design, calibration or validation of the methodology. -
Small Dose... Big Poison
Traps for the unwary George Braitberg Ed Oakley Small dose... Big poison All substances are poisons; Background There is none which is not a poison. It is not possible to identify all toxic substances in a single The right dose differentiates a poison from a remedy. journal article. However, there are some exposures that in Paracelsus (1493–1541)1 small doses are potentially fatal. Many of these exposures are particularly toxic to children. Using data from poison control centres, it is possible to recognise this group of Poisoning is a frequent occurrence with a low fatality rate. exposures. In 2008, almost 2.5 million human exposures were reported to the National Poison Data System (NPDS) in the United Objective States, of which only 1315 were thought to contribute This article provides information to assist the general to fatality.2 The most common poisons associated with practitioner to identify potential toxic substance exposures in children. fatalities are shown in Figure 1. Polypharmacy (the ingestion of more than one drug) is far more common. Discussion In this article the authors report the signs and symptoms Substances most frequently involved in human exposure are shown of toxic exposures and identify the time of onset. Where in Figure 2. In paediatric exposures there is an over-representation clear recommendations on the period of observation and of personal care products, cleaning solutions and other household known fatal dose are available, these are provided. We do not discuss management or disposition, and advise readers products, with ingestions peaking in the toddler age group. This to contact the Poison Information Service or a toxicologist reflects the acquisition of developmental milestones and subsequent for this advice. -
Comparison of Selected in Vitro Assays for Assessing the Toxicity of Chemicals and Their Mixtures
COMPARISON OF SELECTED IN VITRO ASSAYS FOR ASSESSING THE TOXICITY OF CHEMICALS AND THEIR MIXTURES Rola Azzi A thesis submitted for the degree of Doctor of Philosophy Chemical Safety and Applied Toxicology Laboratories School of Safety Science Faculty of Science The University of New South Wales June 2006 Certificate of Originality Certificate of Originality I hereby declare that this submission is my own work and that, to the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any degree at UNSW or any other education institution, except where due acknowledgment is made in the thesis. Any contributions made to the research by others, which whom I have worked, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. Rola Azzi June 2006 i Acknowledgments Acknowledgments I would like to express my sincerest gratitude to my supervisor Dr Amanda Hayes for her assistance, constant encouragement and expertise. Without her support and guidance this project would not have been possible. I am also grateful to Associate Professor Chris Winder, for his constant support, advice, and scientific expertise throughout my work on this project. I would also like to express my sincerest gratitude and appreciation to my uncle, Associate Professor Rachad Saliba, who was a constant support during the writing of this thesis, and was devoted to helping me grasp the science of statistics, and its ability to transform numbers into a story. -
Toxicological Profile for Zinc
TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486). -
Toxicological Profile for Copper
TOXICOLOGICAL PROFILE FOR COPPER U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2004 COPPER ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. COPPER iii UPDATE STATEMENT A Toxicological Profile for Copper, Draft for Public Comment was released in September 2002. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, Mailstop F-32 Atlanta, Georgia 30333 COPPER vii QUICK REFERENCE FOR HEALTH CARE PROVIDERS Toxicological Profiles are a unique compilation of toxicological information on a given hazardous substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation of available toxicologic and epidemiologic information on a substance. Health care providers treating patients potentially exposed to hazardous substances will find the following information helpful for fast answers to often-asked questions. Primary Chapters/Sections of Interest Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating patients about possible exposure to a hazardous substance. It explains a substance’s relevant toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of the general health effects observed following exposure. Chapter 2: Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, and assesses the significance of toxicity data to human health. -
Effects of Temperature and Storage Conditions on the Electrophoretic, Toxic and Enzymatic Stability of Venom Components Sean M
Comp. Biochem. Physiol. Vol. 119B, No. 1, pp. 119±127, 1998 ISSN 0305-0491/98/$19.00 Copyright 1998 Elsevier Science Inc. All rights reserved. PII S0305-0491(97)00294-0 Effects of Temperature and Storage Conditions on the Electrophoretic, Toxic and Enzymatic Stability of Venom Components Sean M. Munekiyo and Stephen P. Mackessy Department of Biological Sciences, 501 20th St., University of Northern Colorado, Greeley, CO 80639, U.S.A. ABSTRACT. Rattlesnake venoms are complex biological products containing potentially autolytic compo- nents, and they provide a useful tool for the study of long-term maintenance of enzymes in a competent state, both in vivo and in vitro. To evaluate the stability of venom components, 15 aliquots of freshly extracted venom (from Crotalus molossus molossus) were subjected to 15 different temperature and storage conditions for 1 week and then lyophilized; conditions varied from storage at 280°C (optimal preservation of activities) to dilution (1:24) and storage at 37°C (maximal degradation potential). Effects of different storage conditions were evalu- ated using SDS-PAGE, metalloprotease zymogram gels, a cricket LD50 assay and enzyme assays (metalloprotease, serine proteases, phosphodiesterase, l-amino acid oxidase and phospholipase A2). Venom samples were remark- ably refractive to widely varying conditions; enzyme activities of some samples were variable, particularly l- amino acid oxidase, and one sample treatment showed higher toxicity, but electrophoretic results indicated very little effect on venom proteins. This study suggests that most venom activities should remain stable even if stored or collected under potentially adverse conditions, and freezing samples is not necessarily advantageous.