General Relativity Requires Absolute Space and Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Explain Inertial and Noninertial Frame of Reference
Explain Inertial And Noninertial Frame Of Reference Nathanial crows unsmilingly. Grooved Sibyl harlequin, his meadow-brown add-on deletes mutely. Nacred or deputy, Sterne never soot any degeneration! In inertial frames of the air, hastening their fundamental forces on two forces must be frame and share information section i am throwing the car, there is not a severe bottleneck in What city the greatest value in flesh-seconds for this deviation. The definition of key facet having a small, polished surface have a force gem about a pretend or aspect of something. Fictitious Forces and Non-inertial Frames The Coriolis Force. Indeed, for death two particles moving anyhow, a coordinate system may be found among which saturated their trajectories are rectilinear. Inertial reference frame of inertial frames of angular momentum and explain why? This is illustrated below. Use tow of reference in as sentence Sentences YourDictionary. What working the difference between inertial frame and non inertial fr. Frames of Reference Isaac Physics. In forward though some time and explain inertial and noninertial of frame to prove your measurement problem you. This circumstance undermines a defining characteristic of inertial frames: that with respect to shame given inertial frame, the other inertial frame home in uniform rectilinear motion. The redirect does not rub at any valid page. That according to whether the thaw is inertial or non-inertial In the. This follows from what Einstein formulated as his equivalence principlewhich, in an, is inspired by the consequences of fire fall. Frame of reference synonyms Best 16 synonyms for was of. How read you govern a bleed of reference? Name we will balance in noninertial frame at its axis from another hamiltonian with each printed as explained at all. -
Relativity with a Preferred Frame. Astrophysical and Cosmological Implications Monday, 21 August 2017 15:30 (30 Minutes)
6th International Conference on New Frontiers in Physics (ICNFP2017) Contribution ID: 1095 Type: Talk Relativity with a preferred frame. Astrophysical and cosmological implications Monday, 21 August 2017 15:30 (30 minutes) The present analysis is motivated by the fact that, although the local Lorentz invariance is one of thecorner- stones of modern physics, cosmologically a preferred system of reference does exist. Modern cosmological models are based on the assumption that there exists a typical (privileged) Lorentz frame, in which the universe appear isotropic to “typical” freely falling observers. The discovery of the cosmic microwave background provided a stronger support to that assumption (it is tacitly assumed that the privileged frame, in which the universe appears isotropic, coincides with the CMB frame). The view, that there exists a preferred frame of reference, seems to unambiguously lead to the abolishmentof the basic principles of the special relativity theory: the principle of relativity and the principle of universality of the speed of light. Correspondingly, the modern versions of experimental tests of special relativity and the “test theories” of special relativity reject those principles and presume that a preferred inertial reference frame, identified with the CMB frame, is the only frame in which the two-way speed of light (the average speed from source to observer and back) is isotropic while it is anisotropic in relatively moving frames. In the present study, the existence of a preferred frame is incorporated into the framework of the special relativity, based on the relativity principle and universality of the (two-way) speed of light, at the expense of the freedom in assigning the one-way speeds of light that exists in special relativity. -
The Sagnac Effect: Does It Contradict Relativity?
The Sagnac Effect: Does it Contradict Relativity? By Doug Marett 2012 A number of authors have suggested that the Sagnac effect contradicts the original postulates of Special Relativity, since the postulate of the constancy of the speed of light is violated in rotating systems. [1,2,3] Sagnac himself designed the experiment of 1913 to prove the existence of the aether [4]. Other authors have attempted to explain the effect within the theoretical framework of relativity, even going as far as calling the effect “relativistic”.[5] However, we seek in this paper to show how the Sagnac effect contravenes in principle the concept of the relativity of time and motion. To understand how this happens and its wider implications, it is necessary to look first at the concept of absolute vs. relative motion, what the Sagnac effect implies about these motions, and what follows logically about the broader notions of space and time. Early Ideas Regarding Rotation and Absolute Motion: The fundamental distinction between translational and rotational motion was first pointed out by Sir Isaac Newton, and emphasized later by the work of Ernest Mach and Heinrich Hertz. One of the first experiments on the subject was Newton’s bucket experiment of 1689. It was an experiment to demonstrate that true rotational motion cannot be defined as relative rotation of a body with respect to surrounding bodies – that true motion and rest should be defined relative to absolute space instead. In Newton’s experiment, a bucket is filled with water and hung by a rope. If the rope is twisted around and around until it is tight and then released, the bucket begins to spin rapidly, not only with respect to the observers watching it, but also with respect to the water in the bucket, which at first doesn’t move and remains flat on its surface. -
General Relativity Requires Absolute Space and Time 1 Space
CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server General Relativity Requires Amp`ere’s theory of magnetism [10]. Maxwell uni- Absolute Space and Time fied Faraday’s theory with Huyghens’ wave the- ory of light, where in Maxwell’s theory light is Rainer W. K¨uhne considered as an oscillating electromagnetic wave Lechstr. 63, 38120 Braunschweig, Germany which propagates through the luminiferous aether of Huyghens. We all know that the classical kinematics was re- placed by Einstein’s Special Relativity [11]. Less We examine two far-reaching and somewhat known is that Special Relativity is not able to an- heretic consequences of General Relativity. swer several problems that were explained by clas- (i) It requires a cosmology which includes sical mechanics. a preferred rest frame, absolute space and According to the relativity principle of Special time. (ii) A rotating universe and time travel Relativity, all inertial frames are equivalent, there are strict solutions of General Relativity. is no preferred frame. Absolute motion is not re- quired, only the relative motion between the iner- tial frames is needed. The postulated absence of an absolute frame prohibits the existence of an aether [11]. 1 Space and Time Before Gen- According to Special Relativity, each inertial eral Relativity frame has its own relative time. One can infer via the Lorentz transformations [12] on the time of the According to Aristotle, the Earth was resting in the other inertial frames. Absolute space and time do centre of the universe. He considered the terrestrial not exist. Furthermore, space is homogeneous and frame as a preferred frame and all motion relative isotropic, there does not exist any rotational axis of to the Earth as absolute motion. -
The Physics Surrounding the Michelson-Morley Experiment and a New Æther Theory
The physics surrounding the Michelson-Morley experiment and a new æther theory Israel P´erez Department of Applied Physics, CINVESTAV, M´erida, Yucat´an,M´exico Abstract From the customary view the Michelson-Morley experiment is used to expose the failure of the aether theory. The key point in this experiment is the fringe shift of the interference pattern. Regularly, the fringe shift calculations are only presented from the perspective of the inertial frame where the one-way speed of light is anisotropic which gives a partial vision of the problem. In a spirit of revision of these facts we have meticulously analyzed the physics behind them. As a result, an angular effect which is based on Huyghens principle and plays a fundamental role in the reflection of light waves at moving mirrors is incorporated. Moreover, under the assumption of a null result in the experiment, on the one hand, the fringe shift conditions demand actual relativistic effects; on the other, it is confirmed that Maxwell's electrodynamics and Galilean relativity are incompatible formulations. From these two points at least three inertial theories follow: (1) the special theory of relativity (SR), (2) a new aether theory (NET) based on the Tangherlini transformations and (3) emission theories based on Ritz' modification of electrodynamics. A brief review of their physical content is presented and the problem of the aether detection as well as the propagation of light, within the context of SR and the NET, are discussed. Despite the overwhelming amount of evidences that apparently favors SR we claim that there are no strong reasons to refuse the aether which conceived as a continuous material medium, still stands up as a physical reality and could be physically associated with dark matter, the cosmic background radiation and the vacuum condensates of particle physics. -
Special Relativity: a Centenary Perspective
S´eminaire Poincar´e 1 (2005) 79 { 98 S´eminaire Poincar´e Special Relativity: A Centenary Perspective Clifford M. Will McDonnell Center for the Space Sciences and Department of Physics Washington University St. Louis MO 63130 USA Contents 1 Introduction 79 2 Fundamentals of special relativity 80 2.1 Einstein's postulates and insights . 80 2.2 Time out of joint . 81 2.3 Spacetime and Lorentz invariance . 83 2.4 Special relativistic dynamics . 84 3 Classic tests of special relativity 85 3.1 The Michelson-Morley experiment . 85 3.2 Invariance of c . 86 3.3 Time dilation . 86 3.4 Lorentz invariance and quantum mechanics . 87 3.5 Consistency tests of special relativity . 87 4 Special relativity and curved spacetime 89 4.1 Einstein's equivalence principle . 90 4.2 Metric theories of gravity . 90 4.3 Effective violations of local Lorentz invariance . 91 5 Is gravity Lorentz invariant? 92 6 Tests of local Lorentz invariance at the centenary 93 6.1 Frameworks for Lorentz symmetry violations . 93 6.2 Modern searches for Lorentz symmetry violation . 95 7 Concluding remarks 96 References . 96 1 Introduction A hundred years ago, Einstein laid the foundation for a revolution in our conception of time and space, matter and energy. In his remarkable 1905 paper \On the Electrodynamics of Moving Bodies" [1], and the follow-up note \Does the Inertia of a Body Depend upon its Energy-Content?" [2], he established what we now call special relativity as one of the two pillars on which virtually all of physics of the 20th century would be built (the other pillar being quantum mechanics). -
Glossary "The Difference Between Genius and Stupidity Is That Genius Has Its Limits" - Albert Einstein ( 1879 - 1955 )
Relativity Science Calculator - Glossary "The difference between genius and stupidity is that genius has its limits" - Albert Einstein ( 1879 - 1955 ) Aberration [ aberration of (star)light, astronomical aberration, stellar aberration ]: An astronomical phenomenon different from the phenomenon of parallax whereby small apparent motion displacements of all fixed stars on the celestial sphere due to Earth's orbital velocity mandates that terrestrial telescopes must also be adjusted to slightly different directions as the Earth yearly transits the Sun. Stellar aberration is totally independent of a star's distance from Earth but rather depends upon the transverse velocity of an observer on Earth, all of which is unlike the phenomenon of parallax. For example, vertically falling rain upon your umbrella will appear to come from in front of you the faster you walk and hence the more you will adjust the position of the umbrella to deflect the rain. Finally, the fact that Earth does not drag with itself in its immediate vicinity any amount of aether helps dissuade the concept that indeed the aether exists. Star Aberration produces visual distortions of the spatial external ( spacetime ) world, a sort of faux spacetime curvature geometry. See: Celestial Sphere; also Parallax which is a totally different phenomenon. Absolute Motion, Time and Space by Isaac Newton: "Philosophiae Naturalis Principia Mathematica", by Isaac Newton, published July 5, 1687, translated from the original Latin by Andrew Motte ( 1729 ), as revised by Florian Cajori ( Berkeley, -
A New Cosmology, Based Upon the Hertzian Fundamental Principle of Mechanics by Pascal M
A new cosmology, based upon the Hertzian fundamental principle of mechanics by Pascal M. .Rapier Director Newtonian Science Foundation, 3154 Deseret Dr. Richmond, Calif. PRESENTADO POR EL ACADÉMICO D. JULIO PALACIOS RESUMEN Con el reciente descubrimiento de la explosión de la «estrella neutrónicaj>, y con la invalidación de la teoría de la relatividad de Einstein por el experimento de Kantor, ¡a cosmologia newtoniana adquiere capital importancia. Esta cosmología se basa en el principio fundamental de Mecánica de Hertz : Todo sistema libre, persiste r» su estado de reposo o de movimiento uniforme en el camino más corto. En consecuencia, el corrimiento hacia el rojo de las rayas espectrales resulta ser debido a una degradación de la energía, degradación que es inherente a la propa- gación de la luz, y no a un efecto de Doppler, ad hoc, como se había admitido. Ea relación entre dicho corrimiento y la luminosidad, observada en las galaxias lejanas, se deduce de dicho principio y sirve para confirmarlo. Se demuestra además que la energía que llena todo el espacio y que se atribuye a los neutrinos, es el resultado de reacciones nucleares consistentes en la emisión de partículas beta y del corrimiento hacia el rojo. Esta energía es responsable de las explosiones de las «estrellas neutrónicas». Tales explosiones sirven para recrear hidrógeno virgen a partir de los detritus estelares y para distribuirlo por todo el universo, con lo que hay una creación continua de nuevas estrellas. En consecuen- cia, dunque el universo fuese infinitamente viejo, no tiene porqué «venirse abajo». Además, la cosmología newtoniana exige que el espacio sea estable, que no se ex- panda, y que sea homogéneo, euclideo e infinito. -
Basic Concepts for a Fundamental Aether Theory1
BASIC CONCEPTS FOR A FUNDAMENTAL AETHER THEORY1 Joseph Levy 4 square Anatole France, 91250 St Germain-lès-Corbeil, France E-mail: [email protected] 55 Pages, 8 figures, Subj-Class General physics ABSTRACT In the light of recent experimental and theoretical data, we go back to the studies tackled in previous publications [1] and develop some of their consequences. Some of their main aspects will be studied in further detail. Yet this text remains self- sufficient. The questions asked following these studies will be answered. The consistency of these developments in addition to the experimental results, enable to strongly support the existence of a preferred aether frame and of the anisotropy of the one-way speed of light in the Earth frame. The theory demonstrates that the apparent invariance of the speed of light results from the systematic measurement distortions entailed by length contraction, clock retardation and the synchronization procedures with light signals or by slow clock transport. Contrary to what is often believed, these two methods have been demonstrated to be equivalent by several authors [1]. The compatibility of the relativity principle with the existence of a preferred aether frame and with mass-energy conservation is discussed and the relation existing between the aether and inertial mass is investigated. The experimental space-time transformations connect co-ordinates altered by the systematic measurement distortions. Once these distortions are corrected, the hidden variables they conceal are disclosed. The theory sheds light on several points of physics which had not found a satisfactory explanation before. (Further important comments will be made in ref [1d]). -
Dynamic Medium of Reference: a New Theory of Gravitation Olivier Pignard
Dynamic medium of reference: A new theory of gravitation Olivier Pignard To cite this version: Olivier Pignard. Dynamic medium of reference: A new theory of gravitation. Physics Essays, Cenveo Publisher Services, 2019, 32 (4), pp.422-438. 10.4006/0836-1398-32.4.422]. hal-03130502 HAL Id: hal-03130502 https://hal.archives-ouvertes.fr/hal-03130502 Submitted on 18 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICS ESSAYS 32, 4 (2019) Dynamic medium of reference: A new theory of gravitation Olivier Pignarda) 16 Boulevard du Docteur Cathelin, 91160 Longjumeau, France (Received 25 May 2019; accepted 22 August 2019; published online 1 October 2019) Abstract: The object of this article is to present a new theory based on the introduction of a non- material medium which makes it possible to obtain a Preferred Frame of Reference (in the context of special relativity) or a Reference (in the context of general relativity), that is to say a dynamic medium of reference. The theory of the dynamic medium of reference is an extension of Lorentz–Poincare’s theory in the domain of gravitation in which instruments (clocks, rulers) are perturbed by gravitation and where only the measure of the speed of light always gives the same result. -
Superluminal Reference Frames and Tachyons
SUPERLUMINAL REFERENCE FRAMES AND TACHYONS RODERICK SUTHERLAND Master of Science Thesis (Physics) University of N.S.W. 1974. This is to certify that the work embodied in this thesis has not been previously submitted for the award of a degree in any other institution. A B S T R A C T A theoretical investigation is made to determine some likely properties that tachyons s~ould have if they exist. Starting from the Minkowski picture of space-time the appropriate generalizations of the Lorentz transformations to transluminal and superluminal transformations are found. The geometric properties of superluminal 3-spaces are derived for the purpose of studying the characteristics of tachyons relative to their rest frames, and the geometry of such spaces is seen to be hyperbolic. In considering closed surfaces in superluminal spaces it is found that the type of surface which is symmetric under a rotation of superluminal spatial axes (i.e. which is analogous to a Euclidean sphere) is a hyperboloid, and is therefore not closed. This implies serious difficulties in regard to the structure of tachyons and the form of their fields. The generalized expressions for the energy and momentum of a particle relative to both subluminal and superluminal frames are deduced, and some consideration is given to the dynamics of particle motion (both tachyons and tardyons) relative to superluminal frames. Also, the superluminal version of the Klein-Gordon equation is constructed from the expression for the 4-momentum of a particle relative to a superluminal frame. It is found that the tensor formulation of subluminal electromagnetism is not covariant under a transluminal Lorentz transformation. -
Special Relativity with a Preferred Frame and the Relativity Principle
Journal of Modern Physics, 2018, 9, 1591-1616 http://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Special Relativity with a Preferred Frame and the Relativity Principle Georgy I. Burde Alexandre Yersin Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel How to cite this paper: Burde, G.I. (2018) Abstract Special Relativity with a Preferred Frame and the Relativity Principle. Journal of The purpose of the present study is to develop a counterpart of the special re- Modern Physics, 9, 1591-1616. lativity theory that is consistent with the existence of a preferred frame but, https://doi.org/10.4236/jmp.2018.98100 like the standard relativity theory, is based on the relativity principle and the Received: March 26, 2018 universality of the (two-way) speed of light. The synthesis of such seemingly Accepted: July 17, 2018 incompatible concepts as the existence of preferred frame and the relativity Published: July 23, 2018 principle is possible at the expense of the freedom in assigning the one-way speeds of light that exists in special relativity. In the framework developed, a Copyright © 2018 by author and Scientific Research Publishing Inc. degree of anisotropy of the one-way speed acquires meaning of a characteris- This work is licensed under the Creative tic of the really existing anisotropy caused by motion of an inertial frame rela- Commons Attribution International tive to the preferred frame. The anisotropic special relativity kinematics is License (CC BY 4.0).