Relativity with a Preferred Frame. Astrophysical and Cosmological Implications Monday, 21 August 2017 15:30 (30 Minutes)

Total Page:16

File Type:pdf, Size:1020Kb

Relativity with a Preferred Frame. Astrophysical and Cosmological Implications Monday, 21 August 2017 15:30 (30 Minutes) 6th International Conference on New Frontiers in Physics (ICNFP2017) Contribution ID: 1095 Type: Talk Relativity with a preferred frame. Astrophysical and cosmological implications Monday, 21 August 2017 15:30 (30 minutes) The present analysis is motivated by the fact that, although the local Lorentz invariance is one of thecorner- stones of modern physics, cosmologically a preferred system of reference does exist. Modern cosmological models are based on the assumption that there exists a typical (privileged) Lorentz frame, in which the universe appear isotropic to “typical” freely falling observers. The discovery of the cosmic microwave background provided a stronger support to that assumption (it is tacitly assumed that the privileged frame, in which the universe appears isotropic, coincides with the CMB frame). The view, that there exists a preferred frame of reference, seems to unambiguously lead to the abolishmentof the basic principles of the special relativity theory: the principle of relativity and the principle of universality of the speed of light. Correspondingly, the modern versions of experimental tests of special relativity and the “test theories” of special relativity reject those principles and presume that a preferred inertial reference frame, identified with the CMB frame, is the only frame in which the two-way speed of light (the average speed from source to observer and back) is isotropic while it is anisotropic in relatively moving frames. In the present study, the existence of a preferred frame is incorporated into the framework of the special relativity, based on the relativity principle and universality of the (two-way) speed of light, at the expense of the freedom in assigning the one-way speeds of light that exists in special relativity. In the framework developed, a degree of anisotropy of the one-way speed acquires meaning of a characteristic of the really existing anisotropy caused by motion of an inertial frame relative to the preferred frame. The anisotropic special relativity kinematics is developed based on the first principles: (1) Space-time transformations between inertial frames leave the equation of anisotropic light propagation invariant and (2) A set of the transformations possesses a group structure. The Lie group theory apparatus is applied as in [1] to define groups of transformations. The corresponding extension to general relativity, like the standard general relativity, is based on the existence of locally inertial frames and the equivalence principle. Despite the fact that, in the special relativity with a preferred frame developed as described above, the interval is not invariant but conformally modified under the transformations between inertial frames, the complete apparatus of general relativity can be applied based on the existence of an invariant combination which, upon a change of the time and space variables, takes the form of the Minkowski interval. However, to calculate physical effects, an inverse change of variables to the ‘physical’ time and space is needed. Among the applications of the relativity with a preferred frame, is a possible resolution of the so-named ‘acceleration problem’ which appeared after the discovery that the present expansion of the universe is accelerated, made using the luminosity distance versus redshift relation of type Ia supernovae. It is interpreted as that the time evolution of the expansion rate cannot be described by a matter-dominated Friedman-Robertson-Walker cosmological model of the universe. In order to explain the discrepancy within the context of General Relativity, a new component of the energy density of the uni- verse, known as Dark Energy (vacuum energy), with exotic properties is usually introduced, and also some other non-standard alternatives are considered. In the framework of the relativity with a preferred frame, the deceleration parameter in the luminosity distance - redshift relation is corrected such that the observed deceleration parameter can be negative. Thus, the observed negative values of the deceleration parameter do not exclude the Friedman dynamics corresponding to the matter-dominated decelerating universe. References [1] Burde G.I.: Special relativity kinematics with anisotropic propagation of light and correspondence princi- ple. Found. Phys., Vol. 46, No 12, Pages: 1573-1597 Topic: Special Session: Astro-Cosmo-Gravity Summary Primary author: BURDE, Georgy (Ben-Gurion University of the Negev) Presenter: BURDE, Georgy (Ben-Gurion University of the Negev) Session Classification: Special session on Astro-Cosmo-Gravity Track Classification: Special session on Astro-Cosmo-Gravity.
Recommended publications
  • Explain Inertial and Noninertial Frame of Reference
    Explain Inertial And Noninertial Frame Of Reference Nathanial crows unsmilingly. Grooved Sibyl harlequin, his meadow-brown add-on deletes mutely. Nacred or deputy, Sterne never soot any degeneration! In inertial frames of the air, hastening their fundamental forces on two forces must be frame and share information section i am throwing the car, there is not a severe bottleneck in What city the greatest value in flesh-seconds for this deviation. The definition of key facet having a small, polished surface have a force gem about a pretend or aspect of something. Fictitious Forces and Non-inertial Frames The Coriolis Force. Indeed, for death two particles moving anyhow, a coordinate system may be found among which saturated their trajectories are rectilinear. Inertial reference frame of inertial frames of angular momentum and explain why? This is illustrated below. Use tow of reference in as sentence Sentences YourDictionary. What working the difference between inertial frame and non inertial fr. Frames of Reference Isaac Physics. In forward though some time and explain inertial and noninertial of frame to prove your measurement problem you. This circumstance undermines a defining characteristic of inertial frames: that with respect to shame given inertial frame, the other inertial frame home in uniform rectilinear motion. The redirect does not rub at any valid page. That according to whether the thaw is inertial or non-inertial In the. This follows from what Einstein formulated as his equivalence principlewhich, in an, is inspired by the consequences of fire fall. Frame of reference synonyms Best 16 synonyms for was of. How read you govern a bleed of reference? Name we will balance in noninertial frame at its axis from another hamiltonian with each printed as explained at all.
    [Show full text]
  • Frames of Reference
    Galilean Relativity 1 m/s 3 m/s Q. What is the women velocity? A. With respect to whom? Frames of Reference: A frame of reference is a set of coordinates (for example x, y & z axes) with respect to whom any physical quantity can be determined. Inertial Frames of Reference: - The inertia of a body is the resistance of changing its state of motion. - Uniformly moving reference frames (e.g. those considered at 'rest' or moving with constant velocity in a straight line) are called inertial reference frames. - Special relativity deals only with physics viewed from inertial reference frames. - If we can neglect the effect of the earth’s rotations, a frame of reference fixed in the earth is an inertial reference frame. Galilean Coordinate Transformations: For simplicity: - Let coordinates in both references equal at (t = 0 ). - Use Cartesian coordinate systems. t1 = t2 = 0 t1 = t2 At ( t1 = t2 ) Galilean Coordinate Transformations are: x2= x 1 − vt 1 x1= x 2+ vt 2 or y2= y 1 y1= y 2 z2= z 1 z1= z 2 Recall v is constant, differentiation of above equations gives Galilean velocity Transformations: dx dx dx dx 2 =1 − v 1 =2 − v dt 2 dt 1 dt 1 dt 2 dy dy dy dy 2 = 1 1 = 2 dt dt dt dt 2 1 1 2 dz dz dz dz 2 = 1 1 = 2 and dt2 dt 1 dt 1 dt 2 or v x1= v x 2 + v v x2 =v x1 − v and Similarly, Galilean acceleration Transformations: a2= a 1 Physics before Relativity Classical physics was developed between about 1650 and 1900 based on: * Idealized mechanical models that can be subjected to mathematical analysis and tested against observation.
    [Show full text]
  • The Sagnac Effect: Does It Contradict Relativity?
    The Sagnac Effect: Does it Contradict Relativity? By Doug Marett 2012 A number of authors have suggested that the Sagnac effect contradicts the original postulates of Special Relativity, since the postulate of the constancy of the speed of light is violated in rotating systems. [1,2,3] Sagnac himself designed the experiment of 1913 to prove the existence of the aether [4]. Other authors have attempted to explain the effect within the theoretical framework of relativity, even going as far as calling the effect “relativistic”.[5] However, we seek in this paper to show how the Sagnac effect contravenes in principle the concept of the relativity of time and motion. To understand how this happens and its wider implications, it is necessary to look first at the concept of absolute vs. relative motion, what the Sagnac effect implies about these motions, and what follows logically about the broader notions of space and time. Early Ideas Regarding Rotation and Absolute Motion: The fundamental distinction between translational and rotational motion was first pointed out by Sir Isaac Newton, and emphasized later by the work of Ernest Mach and Heinrich Hertz. One of the first experiments on the subject was Newton’s bucket experiment of 1689. It was an experiment to demonstrate that true rotational motion cannot be defined as relative rotation of a body with respect to surrounding bodies – that true motion and rest should be defined relative to absolute space instead. In Newton’s experiment, a bucket is filled with water and hung by a rope. If the rope is twisted around and around until it is tight and then released, the bucket begins to spin rapidly, not only with respect to the observers watching it, but also with respect to the water in the bucket, which at first doesn’t move and remains flat on its surface.
    [Show full text]
  • General Relativity Requires Absolute Space and Time 1 Space
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server General Relativity Requires Amp`ere’s theory of magnetism [10]. Maxwell uni- Absolute Space and Time fied Faraday’s theory with Huyghens’ wave the- ory of light, where in Maxwell’s theory light is Rainer W. K¨uhne considered as an oscillating electromagnetic wave Lechstr. 63, 38120 Braunschweig, Germany which propagates through the luminiferous aether of Huyghens. We all know that the classical kinematics was re- placed by Einstein’s Special Relativity [11]. Less We examine two far-reaching and somewhat known is that Special Relativity is not able to an- heretic consequences of General Relativity. swer several problems that were explained by clas- (i) It requires a cosmology which includes sical mechanics. a preferred rest frame, absolute space and According to the relativity principle of Special time. (ii) A rotating universe and time travel Relativity, all inertial frames are equivalent, there are strict solutions of General Relativity. is no preferred frame. Absolute motion is not re- quired, only the relative motion between the iner- tial frames is needed. The postulated absence of an absolute frame prohibits the existence of an aether [11]. 1 Space and Time Before Gen- According to Special Relativity, each inertial eral Relativity frame has its own relative time. One can infer via the Lorentz transformations [12] on the time of the According to Aristotle, the Earth was resting in the other inertial frames. Absolute space and time do centre of the universe. He considered the terrestrial not exist. Furthermore, space is homogeneous and frame as a preferred frame and all motion relative isotropic, there does not exist any rotational axis of to the Earth as absolute motion.
    [Show full text]
  • The Experimental Verdict on Spacetime from Gravity Probe B
    The Experimental Verdict on Spacetime from Gravity Probe B James Overduin Abstract Concepts of space and time have been closely connected with matter since the time of the ancient Greeks. The history of these ideas is briefly reviewed, focusing on the debate between “absolute” and “relational” views of space and time and their influence on Einstein’s theory of general relativity, as formulated in the language of four-dimensional spacetime by Minkowski in 1908. After a brief detour through Minkowski’s modern-day legacy in higher dimensions, an overview is given of the current experimental status of general relativity. Gravity Probe B is the first test of this theory to focus on spin, and the first to produce direct and unambiguous detections of the geodetic effect (warped spacetime tugs on a spin- ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime around with it). These effects have important implications for astrophysics, cosmol- ogy and the origin of inertia. Philosophically, they might also be viewed as tests of the propositions that spacetime acts on matter (geodetic effect) and that matter acts back on spacetime (frame-dragging effect). 1 Space and Time Before Minkowski The Stoic philosopher Zeno of Elea, author of Zeno’s paradoxes (c. 490-430 BCE), is said to have held that space and time were unreal since they could neither act nor be acted upon by matter [1]. This is perhaps the earliest version of the relational view of space and time, a view whose philosophical fortunes have waxed and waned with the centuries, but which has exercised enormous influence on physics.
    [Show full text]
  • Special Relativity: a Centenary Perspective
    S´eminaire Poincar´e 1 (2005) 79 { 98 S´eminaire Poincar´e Special Relativity: A Centenary Perspective Clifford M. Will McDonnell Center for the Space Sciences and Department of Physics Washington University St. Louis MO 63130 USA Contents 1 Introduction 79 2 Fundamentals of special relativity 80 2.1 Einstein's postulates and insights . 80 2.2 Time out of joint . 81 2.3 Spacetime and Lorentz invariance . 83 2.4 Special relativistic dynamics . 84 3 Classic tests of special relativity 85 3.1 The Michelson-Morley experiment . 85 3.2 Invariance of c . 86 3.3 Time dilation . 86 3.4 Lorentz invariance and quantum mechanics . 87 3.5 Consistency tests of special relativity . 87 4 Special relativity and curved spacetime 89 4.1 Einstein's equivalence principle . 90 4.2 Metric theories of gravity . 90 4.3 Effective violations of local Lorentz invariance . 91 5 Is gravity Lorentz invariant? 92 6 Tests of local Lorentz invariance at the centenary 93 6.1 Frameworks for Lorentz symmetry violations . 93 6.2 Modern searches for Lorentz symmetry violation . 95 7 Concluding remarks 96 References . 96 1 Introduction A hundred years ago, Einstein laid the foundation for a revolution in our conception of time and space, matter and energy. In his remarkable 1905 paper \On the Electrodynamics of Moving Bodies" [1], and the follow-up note \Does the Inertia of a Body Depend upon its Energy-Content?" [2], he established what we now call special relativity as one of the two pillars on which virtually all of physics of the 20th century would be built (the other pillar being quantum mechanics).
    [Show full text]
  • Principle of Relativity and Inertial Dragging
    ThePrincipleofRelativityandInertialDragging By ØyvindG.Grøn OsloUniversityCollege,Departmentofengineering,St.OlavsPl.4,0130Oslo, Norway Email: [email protected] Mach’s principle and the principle of relativity have been discussed by H. I. HartmanandC.Nissim-Sabatinthisjournal.Severalphenomenaweresaidtoviolate the principle of relativity as applied to rotating motion. These claims have recently been contested. However, in neither of these articles have the general relativistic phenomenonofinertialdraggingbeeninvoked,andnocalculationhavebeenoffered byeithersidetosubstantiatetheirclaims.HereIdiscussthepossiblevalidityofthe principleofrelativityforrotatingmotionwithinthecontextofthegeneraltheoryof relativity, and point out the significance of inertial dragging in this connection. Although my main points are of a qualitative nature, I also provide the necessary calculationstodemonstratehowthesepointscomeoutasconsequencesofthegeneral theoryofrelativity. 1 1.Introduction H. I. Hartman and C. Nissim-Sabat 1 have argued that “one cannot ascribe all pertinentobservationssolelytorelativemotionbetweenasystemandtheuniverse”. They consider an UR-scenario in which a bucket with water is atrest in a rotating universe,andaBR-scenariowherethebucketrotatesinanon-rotatinguniverseand givefiveexamplestoshowthatthesesituationsarenotphysicallyequivalent,i.e.that theprincipleofrelativityisnotvalidforrotationalmotion. When Einstein 2 presented the general theory of relativity he emphasized the importanceofthegeneralprincipleofrelativity.Inasectiontitled“TheNeedforan
    [Show full text]
  • Basic Concepts for a Fundamental Aether Theory1
    BASIC CONCEPTS FOR A FUNDAMENTAL AETHER THEORY1 Joseph Levy 4 square Anatole France, 91250 St Germain-lès-Corbeil, France E-mail: [email protected] 55 Pages, 8 figures, Subj-Class General physics ABSTRACT In the light of recent experimental and theoretical data, we go back to the studies tackled in previous publications [1] and develop some of their consequences. Some of their main aspects will be studied in further detail. Yet this text remains self- sufficient. The questions asked following these studies will be answered. The consistency of these developments in addition to the experimental results, enable to strongly support the existence of a preferred aether frame and of the anisotropy of the one-way speed of light in the Earth frame. The theory demonstrates that the apparent invariance of the speed of light results from the systematic measurement distortions entailed by length contraction, clock retardation and the synchronization procedures with light signals or by slow clock transport. Contrary to what is often believed, these two methods have been demonstrated to be equivalent by several authors [1]. The compatibility of the relativity principle with the existence of a preferred aether frame and with mass-energy conservation is discussed and the relation existing between the aether and inertial mass is investigated. The experimental space-time transformations connect co-ordinates altered by the systematic measurement distortions. Once these distortions are corrected, the hidden variables they conceal are disclosed. The theory sheds light on several points of physics which had not found a satisfactory explanation before. (Further important comments will be made in ref [1d]).
    [Show full text]
  • Dynamic Medium of Reference: a New Theory of Gravitation Olivier Pignard
    Dynamic medium of reference: A new theory of gravitation Olivier Pignard To cite this version: Olivier Pignard. Dynamic medium of reference: A new theory of gravitation. Physics Essays, Cenveo Publisher Services, 2019, 32 (4), pp.422-438. 10.4006/0836-1398-32.4.422]. hal-03130502 HAL Id: hal-03130502 https://hal.archives-ouvertes.fr/hal-03130502 Submitted on 18 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICS ESSAYS 32, 4 (2019) Dynamic medium of reference: A new theory of gravitation Olivier Pignarda) 16 Boulevard du Docteur Cathelin, 91160 Longjumeau, France (Received 25 May 2019; accepted 22 August 2019; published online 1 October 2019) Abstract: The object of this article is to present a new theory based on the introduction of a non- material medium which makes it possible to obtain a Preferred Frame of Reference (in the context of special relativity) or a Reference (in the context of general relativity), that is to say a dynamic medium of reference. The theory of the dynamic medium of reference is an extension of Lorentz–Poincare’s theory in the domain of gravitation in which instruments (clocks, rulers) are perturbed by gravitation and where only the measure of the speed of light always gives the same result.
    [Show full text]
  • Superluminal Reference Frames and Tachyons
    SUPERLUMINAL REFERENCE FRAMES AND TACHYONS RODERICK SUTHERLAND Master of Science Thesis (Physics) University of N.S.W. 1974. This is to certify that the work embodied in this thesis has not been previously submitted for the award of a degree in any other institution. A B S T R A C T A theoretical investigation is made to determine some likely properties that tachyons s~ould have if they exist. Starting from the Minkowski picture of space-time the appropriate generalizations of the Lorentz transformations to transluminal and superluminal transformations are found. The geometric properties of superluminal 3-spaces are derived for the purpose of studying the characteristics of tachyons relative to their rest frames, and the geometry of such spaces is seen to be hyperbolic. In considering closed surfaces in superluminal spaces it is found that the type of surface which is symmetric under a rotation of superluminal spatial axes (i.e. which is analogous to a Euclidean sphere) is a hyperboloid, and is therefore not closed. This implies serious difficulties in regard to the structure of tachyons and the form of their fields. The generalized expressions for the energy and momentum of a particle relative to both subluminal and superluminal frames are deduced, and some consideration is given to the dynamics of particle motion (both tachyons and tardyons) relative to superluminal frames. Also, the superluminal version of the Klein-Gordon equation is constructed from the expression for the 4-momentum of a particle relative to a superluminal frame. It is found that the tensor formulation of subluminal electromagnetism is not covariant under a transluminal Lorentz transformation.
    [Show full text]
  • Newton's First Law of Motion the Principle of Relativity
    MATHEMATICS 7302 (Analytical Dynamics) YEAR 2017–2018, TERM 2 HANDOUT #1: NEWTON’S FIRST LAW AND THE PRINCIPLE OF RELATIVITY Newton’s First Law of Motion Our experience seems to teach us that the “natural” state of all objects is at rest (i.e. zero velocity), and that objects move (i.e. have a nonzero velocity) only when forces are being exerted on them. Aristotle (384 BCE – 322 BCE) thought so, and many (but not all) philosophers and scientists agreed with him for nearly two thousand years. It was Galileo Galilei (1564–1642) who first realized, through a combination of experi- mentation and theoretical reflection, that our everyday belief is utterly wrong: it is an illusion caused by the fact that we live in a world dominated by friction. By using lubricants to re- duce friction to smaller and smaller values, Galileo showed experimentally that objects tend to maintain nearly their initial velocity — whatever that velocity may be — for longer and longer times. He then guessed that, in the idealized situation in which friction is completely eliminated, an object would move forever at whatever velocity it initially had. Thus, an object initially at rest would stay at rest, but an object initially moving at 100 m/s east (for example) would continue moving forever at 100 m/s east. In other words, Galileo guessed: An isolated object (i.e. one subject to no forces from other objects) moves at constant velocity, i.e. in a straight line at constant speed. Any constant velocity is as good as any other. This principle was later incorporated in the physical theory of Isaac Newton (1642–1727); it is nowadays known as Newton’s first law of motion.
    [Show full text]
  • + Gravity Probe B
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58
    [Show full text]