Crystallographic Directions and Planes

Total Page:16

File Type:pdf, Size:1020Kb

Crystallographic Directions and Planes Chem 253, UC, Berkeley Crystallographic Directions And Planes Lattice Directions Individual directions: [uvw] Symmetry-related directions: <uvw> Chem 253, UC, Berkeley 1 Chem 253, UC, Berkeley Crystallographic Directions And Planes Miller Indices: 1. Find the intercepts on the axes in terms of the lattice constant a, b, c 2. Take the reciprocals of these numbers, reduce to the three integers having the same ratio (hkl) Set of symmetry-related planes: {hkl} Chem 253, UC, Berkeley (100) (111) (200) (110) 2 Chem 253, UC, Berkeley Chem 253, UC, Berkeley Crystallographic Directions And Planes Miller-Bravais indices [uvtw], (hkil) t=-(u+v) i=-(h+k) 3 Chem 253, UC, Berkeley In cubic system, [hkl] direction perpendicular to (hkl) plane Chem 253, UC, Berkeley Lattice spacing 1 h2 k 2 l 2 2 2 For cubic system dhkl a 4 Chem 253, UC, Berkeley Chem 253, UC, Berkeley Crystal Structure Analysis X-ray diffraction Electron Diffraction Neutron Diffraction Essence of diffraction: Bragg Diffraction 5 Chem 253, UC, Berkeley Interference fringes Light Constructive Destructive Chem 253, UC, Berkeley Bragg’s Law n SQ QT dhkl sin dhkl sin 2dhkl sin For cubic system: a But not all planes have the dhkl diffraction !!! h2 k 2 l 2 6 Chem 253, UC, Berkeley X-Ray Diffraction E h hc / Mo: 35KeV ~ 0.1-1.4A Cu K 1.54 A Chem 253, UC, Berkeley X-Ray Diffraction 7 Chem 253, UC, Berkeley Powder diffraction X-Ray (200) Chem 253, UC, Berkeley Powder diffraction 8 Chem 253, UC, Berkeley Laue Diffraction Single crystal Chem 253, UC, Berkeley Electron Diffraction 9 Chem 253, UC, Berkeley Layered Cuprates Thin film, growth oriented along c axis Example: La2CuO2 Cu K 1.54 A 2d sin n 2*theta d (hkl) 7.2 12.1 (001) 14.4 6.1 (002) (00l) 22 4.0 (003) c=12.2 A Chem 253, UC, Berkeley c 12.2 A CuO2 LaO LaO CuO2 10 Chem 253, UC, Berkeley Layered Cuprates Example: Ca0.5Sr0.5CuO2 Thin film, growth oriented along c axis 2d sin n 2*theta d (hkl) 12.7 6.96 (001) 26 3.42 (002) (00l) 42.2 2.15 (003) c=6.96 Å Chem 253, UC, Berkeley c Sr 6.96 Å CuO2 Ca 11 Chem 253, UC, Berkeley What we will see in XRD of simple cubic, BCC, FCC? 2 sin A 2 0.5 (BCC); 0.75 (FCC) sin B a dhkl h2 k 2 l 2 Chem 253, UC, Berkeley Reciprocal Lattice n ' d n R R n1 a n2 b n3 c Path Difference: R n R n' R(n n' ) m 2 R (n n' ) 2m 12 Chem 253, UC, Berkeley Reciprocal Lattice ' 2 k k n d R R n a n b n c 1 2 3 2 R (n n' ) 2m R (k k ' ) 2m Correspond to plane wave: ' ei R( k k ) ei2m 1 Chem 253, UC, Berkeley Reciprocal Lattice ' k k n ' d n R R n1 a n2 b n3 c ' ei R( k k ) 1 Laue Condition ' K k k Reciprocal lattice vector iKR e 1 For all R in the Bravais Lattice 13 Chem 253, UC, Berkeley Reciprocal Lattice k ' d K Reciprocal lattice vector R k i R( k k ' ) e 1 Laue Condition ' K k k Reciprocal lattice vector iKR e 1 For all R in the Bravais Lattice Chem 253, UC, Berkeley Reciprocal Lattice iKR e 1 For all R in the Bravais Lattice A reciprocal lattice is defined with reference to a particular Bravias Lattice. a b c Primitive vectors bc a 2 a (bc) c a b 2 a (bc) ab c 2 a (bc) 14 Chem 253, UC, Berkeley Reciprocal Lattice iKR e 1 For all R in the Bravais Lattice bc a 2 a (bc) a a 2 c a Verify: b 2 a (bc) a b 0 ab c 2 a c 0 a (bc) For any K k1a k2b k3c R n1 a n2 b n3 c K R 2 (k1n1 k2n2 k3n3 ) Chem 253, UC, Berkeley Reciprocal Lattice Reciprocal lattice is always one of 14 Bravais Lattice. a a x b a y Simple cubic c a z bc 2 a 2 x a (bc) a c a Simple cubic b 2 2 a (bc) y ab a c 2 2 a (bc) z a 15 Chem 253, UC, Berkeley Primitive Cell of FCC 1 a a(x y) 1 2 1 a a(z y) 2 2 1 a a(z x) 3 2 o •Angle between a1, a2, a3: 60 Chem 253, UC, Berkeley Primitive Cell of BCC •Rhombohedron primitive cell 0.53a 1 a a (x y z109) o28’ •Primitive Translation Vectors: 1 2 1 1 a a ( x y z) a a (x y z) 2 2 3 2 16 Chem 253, UC, Berkeley Reciprocal Lattice Reciprocal lattice is always one of 14 Bravais Lattice. a a (y z) 2 a b (x z) 2 FCC a c (x y) 2 bc 4 1 a 2 (y z x) a (bc) a 2 c a b 2 4 1 a (bc) (x z y) BCC a 2 ab 4 1 c 2 (x y z) a (bc) a 2 Chem 253, UC, Berkeley Reciprocal Lattice BCC FCC Simple hexagonal Simple hexagonal 17 Chem 253, UC, Berkeley bc a 2 a (b c) c a b 2 a (b c) ab c 2 a (bc) Chem 253, UC, Berkeley bc a 2 a (b c) c a b 2 a (b c) ab c 2 a (bc) 18 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 19 Chem 253, UC, Berkeley Wigner-Seitz cells of reciprocal lattice Chem 253, UC, Berkeley 20 Chem 253, UC, Berkeley L X (a 0 0) Chem 253, UC, Berkeley 21 Chem 253, UC, Berkeley Theorem: For any family of lattice planes separated by distance d, there are reciprocal lattice vectors perpendicular to the planes, the shortest being 2/d. Chem 253, UC, Berkeley Orientation of plane is determined by a normal vector The miller indices of a lattice plane are the coordination at the reciprocal lattice vector normal to the plane. 22 Chem 253, UC, Berkeley 1 1 1 Plane (hkl) (hkl) ( , , ) x1 x2 x3 x2b B K ha kb lc 2 2 2 a b c x1 x2 x3 x3c A C x a 1 bc a 2 K AB AC (x1a x2b)(x1a x3c) a (bc) 1 1 1 c a a b c b 2 x1 x2 x3 a (bc) ab c 2 K ha kb lc a (bc) 23.
Recommended publications
  • The Reciprocal Lattice
    Appendix A THE RECIPROCAL LATTICE When the translations of a primitive space lattice are denoted by a, b and c, the vector p to any lattice point is given p = ua + vb + we. The definition of the reciprocal lattice is that the translations a*, b* and c*, which define the reciprocal lattice fulfil the following relationships: (A. I) a*.b = b*.c = c*.a = a.b* = b.c* =c. a*= 0 (A.2) It can then be easily shown that: (1) Ic* I = 1/c-spacing of primitive lattice and similarly forb* and a*. (2) a*= (b 1\ c)ja.(b 1\ c) b* = (c 1\ a)jb.(c 1\ a) c* =(a 1\ b)/c-(a 1\ b) These last three relations are often used as a definition of the reciprocal lattice. Two properties of the reciprocal lattice are particularly important: (a) The vector g* defined by g* = ha* + kb* + lc* (where h, k and I are integers to the point hkl in the reciprocal lattice) is normal to the plane of Miller indices (hkl) in the primary lattice. (b) The magnitude Ig* I of this vector is the reciprocal of the spacing of (hkl) in the primary lattice. AI ALLOWED REFLECTIONS The kinematical structure factor for reflections is given by Fhkl = I;J;exp[- 2ni(hu; + kv; + lw)] (A.3) where ui' v; and W; are the coordinates of the atoms and hkl the Miller indices of the reflection g. If there is only one atom at 0, 0, 0 in the unit cell then the structure factor will be independent of hkl since for all values of h, k and I we have Fhkl =f.
    [Show full text]
  • The 4 Reciprocal Lattice
    4 The Reciprocal Lattice by Andr~ Authier This electronic edition may be freely copied and redistributed for educational or research purposes only. It may not be sold for profit nor incorporated in any product sold for profit without the express pernfission of The Executive Secretary, International Union of Crystallography, 2 Abbey Square, Chester CIII 211[;, [;K Copyright in this electronic ectition (<.)2001 International l.Jnion of Crystallography Published for the International Union of Crystallography by University College Cardiff Press Cardiff, Wales © 1981 by the International Union of Crystallography. All rights reserved. Published by the University College Cardiff Press for the International Union of Crystallography with the financial assistance of Unesco Contract No. SC/RP 250.271 This pamphlet is one of a series prepared by the Commission on Crystallographic Teaching of the International Union of Crystallography, under the General Editorship of Professor C. A. Taylor. Copies of this pamphlet and other pamphlets in the series may be ordered direct from the University College Cardiff Press, P.O. Box 78, Cardiff CF1 1XL, U.K. ISBN 0 906449 08 I Printed in Wales by University College, Cardiff. Series Preface The long term aim of the Commission on Crystallographic Teaching in establishing this pamphlet programme is to produce a large collection of short statements each dealing with a specific topic at a specific level. The emphasis is on a particular teaching approach and there may well, in time, be pamphlets giving alternative teaching approaches to the same topic. It is not the function of the Commission to decide on the 'best' approach but to make all available so that teachers can make their own selection.
    [Show full text]
  • Types of Lattices
    Types of Lattices Types of Lattices Lattices are either: 1. Primitive (or Simple): one lattice point per unit cell. 2. Non-primitive, (or Multiple) e.g. double, triple, etc.: more than one lattice point per unit cell. Double r2 cell r1 r2 Triple r1 cell r2 r1 Primitive cell N + e 4 Ne = number of lattice points on cell edges (shared by 4 cells) •When repeated by successive translations e =edge reproduce periodic pattern. •Multiple cells are usually selected to make obvious the higher symmetry (usually rotational symmetry) that is possessed by the 1 lattice, which may not be immediately evident from primitive cell. Lattice Points- Review 2 Arrangement of Lattice Points 3 Arrangement of Lattice Points (continued) •These are known as the basis vectors, which we will come back to. •These are not translation vectors (R) since they have non- integer values. The complexity of the system depends upon the symmetry requirements (is it lost or maintained?) by applying the symmetry operations (rotation, reflection, inversion and translation). 4 The Five 2-D Bravais Lattices •From the previous definitions of the four 2-D and seven 3-D crystal systems, we know that there are four and seven primitive unit cells (with 1 lattice point/unit cell), respectively. •We can then ask: can we add additional lattice points to the primitive lattices (or nets), in such a way that we still have a lattice (net) belonging to the same crystal system (with symmetry requirements)? •First illustrate this for 2-D nets, where we know that the surroundings of each lattice point must be identical.
    [Show full text]
  • Chapter 2 X-Ray Diffraction and Reciprocal Lattice
    Chapter 2 X-ray diffraction and reciprocal lattice I. Waves 1. A plane wave is described as Ψ(x,t) = A ei(k⋅x-ωt) A is the amplitude, k is the wave vector, and ω=2πf is the angular frequency. 2. The wave is traveling along the k direction with a velocity c given by ω=c|k|. Wavelength along the traveling direction is given by |k|=2π/λ. 3. When a wave interacts with the crystal, the plane wave will be scattered by the atoms in a crystal and each atom will act like a point source (Huygens’ principle). 4. This formulation can be applied to any waves, like electromagnetic waves and crystal vibration waves; this also includes particles like electrons, photons, and neutrons. A particular case is X-ray. For this reason, what we learn in X-ray diffraction can be applied in a similar manner to other cases. II. X-ray diffraction in real space – Bragg’s Law 1. A crystal structure has lattice and a basis. X-ray diffraction is a convolution of two: diffraction by the lattice points and diffraction by the basis. We will consider diffraction by the lattice points first. The basis serves as a modification to the fact that the lattice point is not a perfect point source (because of the basis). 2. If each lattice point acts like a coherent point source, each lattice plane will act like a mirror. θ θ θ d d sin θ (hkl) -1- 2. The diffraction is elastic. In other words, the X-rays have the same frequency (hence wavelength and |k|) before and after the reflection.
    [Show full text]
  • Chapter 4, Bravais Lattice Primitive Vectors
    Chapter 4, Bravais Lattice A Bravais lattice is the collection of all (and only those) points in space reachable from the origin with position vectors: n , n , n integer (+, -, or 0) r r r r 1 2 3 R = n1a1 + n2 a2 + n3a3 a1, a2, and a3 not all in same plane The three primitive vectors, a1, a2, and a3, uniquely define a Bravais lattice. However, for one Bravais lattice, there are many choices for the primitive vectors. A Bravais lattice is infinite. It is identical (in every aspect) when viewed from any of its lattice points. This is not a Bravais lattice. Honeycomb: P and Q are equivalent. R is not. A Bravais lattice can be defined as either the collection of lattice points, or the primitive translation vectors which construct the lattice. POINT Q OBJECT: Remember that a Bravais lattice has only points. Points, being dimensionless and isotropic, have full spatial symmetry (invariant under any point symmetry operation). Primitive Vectors There are many choices for the primitive vectors of a Bravais lattice. One sure way to find a set of primitive vectors (as described in Problem 4 .8) is the following: (1) a1 is the vector to a nearest neighbor lattice point. (2) a2 is the vector to a lattice points closest to, but not on, the a1 axis. (3) a3 is the vector to a lattice point nearest, but not on, the a18a2 plane. How does one prove that this is a set of primitive vectors? Hint: there should be no lattice points inside, or on the faces (lll)fhlhd(lllid)fd(parallolegrams) of, the polyhedron (parallelepiped) formed by these three vectors.
    [Show full text]
  • Lecture Notes
    Solid State Physics PHYS 40352 by Mike Godfrey Spring 2012 Last changed on May 22, 2017 ii Contents Preface v 1 Crystal structure 1 1.1 Lattice and basis . .1 1.1.1 Unit cells . .2 1.1.2 Crystal symmetry . .3 1.1.3 Two-dimensional lattices . .4 1.1.4 Three-dimensional lattices . .7 1.1.5 Some cubic crystal structures ................................ 10 1.2 X-ray crystallography . 11 1.2.1 Diffraction by a crystal . 11 1.2.2 The reciprocal lattice . 12 1.2.3 Reciprocal lattice vectors and lattice planes . 13 1.2.4 The Bragg construction . 14 1.2.5 Structure factor . 15 1.2.6 Further geometry of diffraction . 17 2 Electrons in crystals 19 2.1 Summary of free-electron theory, etc. 19 2.2 Electrons in a periodic potential . 19 2.2.1 Bloch’s theorem . 19 2.2.2 Brillouin zones . 21 2.2.3 Schrodinger’s¨ equation in k-space . 22 2.2.4 Weak periodic potential: Nearly-free electrons . 23 2.2.5 Metals and insulators . 25 2.2.6 Band overlap in a nearly-free-electron divalent metal . 26 2.2.7 Tight-binding method . 29 2.3 Semiclassical dynamics of Bloch electrons . 32 2.3.1 Electron velocities . 33 2.3.2 Motion in an applied field . 33 2.3.3 Effective mass of an electron . 34 2.4 Free-electron bands and crystal structure . 35 2.4.1 Construction of the reciprocal lattice for FCC . 35 2.4.2 Group IV elements: Jones theory . 36 2.4.3 Binding energy of metals .
    [Show full text]
  • Introduction to Higher Dimensional Description of Quasicrystal Structures
    ISQCS, June 23-27, 2019, Sendai, Tohoku University Introduction to higher dimensional description of quasicrystal structures Hiroyuki Takakura Division of Applied Physics, Faculty of Engineering, Hokkaido University ISQCS, June 23-27, 2019, Sendai, Tohoku University Outline • Diffraction symmetries & Space groups of iQCs • Section method • Fibonacci structure • Icosahedral lattices • Simple models of iQCs • Real iQC structures • Cluster based model of iQCs • Summary ISQCS, June 23-27, 2019, Sendai, Tohoku University Crystal Amorphous Their diffraction patterns ISQCS, June 23-27, 2019, Sendai, Tohoku University Diffraction symmetries and space groups of iQCs ISQCS, June 23-27, 2019, Sendai, Tohoku University X-ray transmission Laue patterns of iQC 2-fold 3-fold 5-fold i-Zn-Mg-Ho F-type ISQCS, June 23-27, 2019, Sendai, Tohoku University Electron diffraction pattern of iQC i-AlMn 1 The arrangement of the diffraction spots is not periodic but quasi-periodic. D.Shechtman et al., Phys.Rev.Lett., 53,1951(1984). ISQCS, June 23-27, 2019, Sendai, Tohoku University Symmetry of iQC 2 Point group 31.72º 5 Order : 120 37.38º 2 5 3 20.90º 3 2 2 Asymmetric region: 6 +10 +15 + m + center ISQCS, June 23-27, 2019, Sendai, Tohoku University X-ray diffraction patterns of iQCs P-type i-Zn-Mg-Ho F-type i-Zn-Mg-Ho 2fy 2fy 5f 5f 3f 3f 2fx 2fx Liner plots ISQCS, June 23-27, 2019, Sendai, Tohoku University X-ray diffraction patterns of iQCs P-type i-Zn-Mg-Ho F-type i-Zn-Mg-Ho 2fy 2fy 5f 5f 3f 3f 2fx All even or all odd for 2fx No reflection condition Log plots ISQCS, June 23-27, 2019, Sendai, Tohoku University Vectors used for indexing 6 Any vectors can be used if all the reflections can be indexed correctly.
    [Show full text]
  • Quasicrystals
    Volume 106, Number 6, November–December 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 975–982 (2001)] Quasicrystals Volume 106 Number 6 November–December 2001 John W. Cahn The discretely diffracting aperiodic crystals Key words: aperiodic crystals; new termed quasicrystals, discovered at NBS branch of crystallography; quasicrystals. National Institute of Standards and in the early 1980s, have led to much inter- Technology, disciplinary activity involving mainly Gaithersburg, MD 20899-8555 materials science, physics, mathematics, and crystallography. It led to a new un- Accepted: August 22, 2001 derstanding of how atoms can arrange [email protected] themselves, the role of periodicity in na- ture, and has created a new branch of crys- tallography. Available online: http://www.nist.gov/jres 1. Introduction The discovery of quasicrystals at NBS in the early Crystal periodicity has been an enormously important 1980s was a surprise [1]. By rapid solidification we had concept in the development of crystallography. Hau¨y’s made a solid that was discretely diffracting like a peri- hypothesis that crystals were periodic structures led to odic crystal, but with icosahedral symmetry. It had long great advances in mathematical and experimental crys- been known that icosahedral symmetry is not allowed tallography in the 19th century. The foundation of crys- for a periodic object [2]. tallography in the early nineteenth century was based on Periodic solids give discrete diffraction, but we did the restrictions that periodicity imposes. Periodic struc- not know then that certain kinds of aperiodic objects can tures in two or three dimensions can only have 1,2,3,4, also give discrete diffraction; these objects conform to a and 6 fold symmetry axes.
    [Show full text]
  • Phys 446: Solid State Physics / Optical Properties
    Phys 446: Solid State Physics / Optical Properties Fall 2015 Lecture 2 Andrei Sirenko, NJIT 1 Solid State Physics Lecture 2 (Ch. 2.1-2.3, 2.6-2.7) Last week: • Crystals, • Crystal Lattice, • Reciprocal Lattice Today: • Types of bonds in crystals Diffraction from crystals • Importance of the reciprocal lattice concept Lecture 2 Andrei Sirenko, NJIT 2 1 (3) The Hexagonal Closed-packed (HCP) structure Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd,Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, Tl • The HCP structure is made up of stacking spheres in a ABABAB… configuration • The HCP structure has the primitive cell of the hexagonal lattice, with a basis of two identical atoms • Atom positions: 000, 2/3 1/3 ½ (remember, the unit axes are not all perpendicular) • The number of nearest-neighbours is 12 • The ideal ratio of c/a for Rotated this packing is (8/3)1/2 = 1.633 three times . Lecture 2 Andrei Sirenko, NJITConventional HCP unit 3 cell Crystal Lattice http://www.matter.org.uk/diffraction/geometry/reciprocal_lattice_exercises.htm Lecture 2 Andrei Sirenko, NJIT 4 2 Reciprocal Lattice Lecture 2 Andrei Sirenko, NJIT 5 Some examples of reciprocal lattices 1. Reciprocal lattice to simple cubic lattice 3 a1 = ax, a2 = ay, a3 = az V = a1·(a2a3) = a b1 = (2/a)x, b2 = (2/a)y, b3 = (2/a)z reciprocal lattice is also cubic with lattice constant 2/a 2. Reciprocal lattice to bcc lattice 1 1 a a x y z a2 ax y z 1 2 2 1 1 a ax y z V a a a a3 3 2 1 2 3 2 2 2 2 b y z b x z b x y 1 a 2 a 3 a Lecture 2 Andrei Sirenko, NJIT 6 3 2 got b y z 1 a 2 b x z 2 a 2 b x y 3 a but these are primitive vectors of fcc lattice So, the reciprocal lattice to bcc is fcc.
    [Show full text]
  • Crystal Structure
    Physics 927 E.Y.Tsymbal Section 1: Crystal Structure A solid is said to be a crystal if atoms are arranged in such a way that their positions are exactly periodic. This concept is illustrated in Fig.1 using a two-dimensional (2D) structure. y T C Fig.1 A B a x 1 A perfect crystal maintains this periodicity in both the x and y directions from -∞ to +∞. As follows from this periodicity, the atoms A, B, C, etc. are equivalent. In other words, for an observer located at any of these atomic sites, the crystal appears exactly the same. The same idea can be expressed by saying that a crystal possesses a translational symmetry. The translational symmetry means that if the crystal is translated by any vector joining two atoms, say T in Fig.1, the crystal appears exactly the same as it did before the translation. In other words the crystal remains invariant under any such translation. The structure of all crystals can be described in terms of a lattice, with a group of atoms attached to every lattice point. For example, in the case of structure shown in Fig.1, if we replace each atom by a geometrical point located at the equilibrium position of that atom, we obtain a crystal lattice. The crystal lattice has the same geometrical properties as the crystal, but it is devoid of any physical contents. There are two classes of lattices: the Bravais and the non-Bravais. In a Bravais lattice all lattice points are equivalent and hence by necessity all atoms in the crystal are of the same kind.
    [Show full text]
  • Chapter 36 Diffraction Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: August 15, 2020)
    Chapter 36 Diffraction Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: August 15, 2020) Interference is the more general concept: it refers to the phenomenon of waves interacting. Waves will add constructively or destructively according to their phase difference. Diffraction usually refers to the spreading wave pattern from a finite-width aperture. 1. Diffraction by a single slit Fig . Single slit diffraction. Imagine the slit divided into many narrow zones, width y (= = a/N). Treat each as a secondary source of light contributing electric field amplitude E to the field at P. We consider a linear array of N coherent point oscillators, which are each identical, even to their polarization. For the moment, we consider the oscillators to have no intrinsic phase difference. The rays shown are all almost parallel, meeting at some very distant point P. If the spatial extent of the array is comparatively small, the separate wave amplitudes arriving at P will be essentially equal, having traveled nearly equal distances, that is E E ()r E (r ) ... E (r ) E ()r 0 0 1 0 2 0 N 0 N The sum of the interfering spherical wavelets yields an electric field at P, given by the real part of i( kr1t ) i( kr2 t ) i( krN t ) E Re[ E0 ()r e E0 ()r e ... E0 ()r e ] i( kr1t ) ik( r2 r 1 ) ik( r3 r 1 ) ik( rN r1 )) Re[ E0 ()r e 1[ e e ... e ]] (( Note )) When the distances r1 and r 2 from sources 1 and 2 to the field point P are large compared with the separation , then these two rays from the sources to the point P are nearly parallel .
    [Show full text]
  • Development of Rotation Electron Diffraction As a Fully Automated And
    Bin Wang Development of rotation electron Development of rotation electron diffraction as a fully automated and accurate method for structure determination and accurate automated as a fully diffraction electron of rotation Development diffraction as a fully automated and accurate method for structure determination Bin Wang Bin Wang was born in Shanghai, China. He received his B.Sc in chemistry from Fudan University in China in 2013, and M.Sc in material chemistry from Cornell University in the US in 2015. His research mainly focused on method development for TEM. ISBN 978-91-7797-646-2 Department of Materials and Environmental Chemistry Doctoral Thesis in Inorganic Chemistry at Stockholm University, Sweden 2019 Development of rotation electron diffraction as a fully automated and accurate method for structure determination Bin Wang Academic dissertation for the Degree of Doctor of Philosophy in Inorganic Chemistry at Stockholm University to be publicly defended on Monday 10 June 2019 at 13.00 in Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B. Abstract Over the past decade, electron diffraction methods have aroused more and more interest for micro-crystal structure determination. Compared to traditional X-ray diffraction, electron diffraction breaks the size limitation of the crystals studied, but at the same time it also suffers from much stronger dynamical effects. While X-ray crystallography has been almost thoroughly developed, electron crystallography is still under active development. To be able to perform electron diffraction experiments, adequate skills for using a TEM are usually required, which makes ED experiments less accessible to average users than X-ray diffraction. Moreover, the relatively poor data statistics from ED data prevented electron crystallography from being widely accepted in the crystallography community.
    [Show full text]