Chem 253, UC, Berkeley

Crystallographic Directions And Planes

Lattice Directions Individual directions: [uvw] Symmetry-related directions:

Chem 253, UC, Berkeley

1 Chem 253, UC, Berkeley

Crystallographic Directions And Planes

Miller Indices:

1. Find the intercepts on the axes in terms of the constant a, b, c 2. Take the reciprocals of these numbers, reduce to the three integers having the same ratio (hkl)

Set of symmetry-related planes: {hkl}

Chem 253, UC, Berkeley

(100) (111)

(200) (110)

2 Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

Crystallographic Directions And Planes

Miller-Bravais indices [uvtw], (hkil) t=-(u+v) i=-(h+k)

3 Chem 253, UC, Berkeley

In cubic system,

[hkl] direction perpendicular to (hkl) plane

Chem 253, UC, Berkeley Lattice spacing

1 h2  k 2  l 2 2  2 For cubic system dhkl a

4 Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

Crystal Structure Analysis

X-ray

Electron Diffraction

Neutron Diffraction

Essence of diffraction: Bragg Diffraction

5 Chem 253, UC, Berkeley

Interference fringes Light

Constructive

Destructive

Chem 253, UC, Berkeley

Bragg’s Law

n  SQ  QT

 dhkl sin  dhkl sin

 2dhkl sin

For cubic system: a But not all planes have the dhkl  diffraction !!! h2  k 2  l 2

6 Chem 253, UC, Berkeley X-Ray Diffraction

E  h  hc / 

Mo: 35KeV ~ 0.1-1.4A Cu K 1.54 A

Chem 253, UC, Berkeley

X-Ray Diffraction

7 Chem 253, UC, Berkeley

X-Ray

(200)

Chem 253, UC, Berkeley

Powder diffraction

8 Chem 253, UC, Berkeley Laue Diffraction

Single

Chem 253, UC, Berkeley

Electron Diffraction

9 Chem 253, UC, Berkeley Layered Cuprates Thin film, growth oriented along c axis Example: La2CuO2

Cu K 1.54 A 2d sin  n

2*theta d (hkl)

7.2 12.1 (001)

14.4 6.1 (002)

(00l) 22 4.0 (003) c=12.2 A

Chem 253, UC, Berkeley

c

12.2 A CuO2 LaO

LaO CuO2

10 Chem 253, UC, Berkeley

Layered Cuprates Example: Ca0.5Sr0.5CuO2 Thin film, growth oriented along c axis 2d sin  n

2*theta d (hkl)

12.7 6.96 (001)

26 3.42 (002) (00l) 42.2 2.15 (003) c=6.96 Å

Chem 253, UC, Berkeley

c

Sr 6.96 Å CuO2 Ca

11 Chem 253, UC, Berkeley What we will see in XRD of simple cubic, BCC, FCC?

2 sin  A 2  0.5 (BCC); 0.75 (FCC) sin  B

a dhkl  h2  k 2  l 2

Chem 253, UC, Berkeley

Reciprocal Lattice

  n ' d n  R     R  n1 a n2 b n3 c Path Difference:          R n R n'  R(n n' )  m

 2   R  (n n' )  2m 

12 Chem 253, UC, Berkeley

Reciprocal Lattice

 '  2 k k  n  d      R R  n a n b n c  1 2 3 2   R  (n n' )  2m     R (k  k ' )  2m    Correspond to plane wave: ' ei R( k k )  ei2m 1

Chem 253, UC, Berkeley Reciprocal Lattice

  '  k k  n ' d n  R     R  n1 a n2 b n3 c    ' ei R( k k ) 1 Laue Condition

 '  K  k  k Reciprocal lattice vector iKR e 1 For all R in the

13 Chem 253, UC, Berkeley Reciprocal Lattice

 k ' d K Reciprocal   lattice vector R k

   i R( k k ' ) e 1 Laue Condition

 '  K  k  k Reciprocal lattice vector iKR e 1 For all R in the Bravais Lattice

Chem 253, UC, Berkeley

Reciprocal Lattice iKR e 1 For all R in the Bravais Lattice A reciprocal lattice is defined with reference to a particular Bravias Lattice.

   a b c Primitive vectors  bc a  2 a (bc)  c a b  2 a (bc)  ab c  2 a (bc)

14 Chem 253, UC, Berkeley Reciprocal Lattice

iKR e 1 For all R in the Bravais Lattice

  bc a  2  a (bc) a a  2  c a Verify: b  2  a (bc) a b  0  ab  c  2 a c  0 a (bc)

For any    K  k1a  k2b  k3c     R  n1 a n2 b n3 c

K  R  2 (k1n1  k2n2  k3n3 )

Chem 253, UC, Berkeley Reciprocal Lattice Reciprocal lattice is always one of 14 Bravais Lattice.

  a  a  x   b  a  y Simple cubic   c  a  z

 bc 2  a  2  x a (bc) a  c a  Simple cubic b  2 2 a (bc)  y  ab a c  2 2  a (bc)  z a

15 Chem 253, UC, Berkeley

Primitive Cell of FCC

1   a  a(x y) 1 2 1   a  a(z y) 2 2

1   a  a(z x) 3 2

o •Angle between a1, a2, a3: 60

Chem 253, UC, Berkeley Primitive Cell of BCC •Rhombohedron primitive cell

0.53a

1    a  a (x y z109) o28’ •Primitive Translation Vectors: 1 2 1    1    a  a ( x y z) a  a (x y z) 2 2 3 2

16 Chem 253, UC, Berkeley Reciprocal Lattice Reciprocal lattice is always one of 14 Bravais Lattice.  a   a  (y  z) 2  a   b  (x  z) 2 FCC  a   c  (x  y) 2

     bc 4 1 a  2  (y z x) a (bc) a 2  c a b  2 4 1    a (bc)  (x z y) BCC a 2      ab 4 1 c  2  (x y z) a (bc) a 2

Chem 253, UC, Berkeley

Reciprocal Lattice

 BCC  FCC

 Simple hexagonal  Simple hexagonal

17 Chem 253, UC, Berkeley

 bc a  2 a (b c)

 c a b  2 a (b c)

 ab c  2 a (bc)

Chem 253, UC, Berkeley

 bc a  2 a (b c)

 c a b  2 a (b c)

 ab c  2 a (bc)

18 Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

19 Chem 253, UC, Berkeley

Wigner-Seitz cells of reciprocal lattice

Chem 253, UC, Berkeley

20 Chem 253, UC, Berkeley

L 

X (a 0 0)

Chem 253, UC, Berkeley

21 Chem 253, UC, Berkeley

Theorem: For any family of lattice planes separated by distance d, there are reciprocal lattice vectors perpendicular to the planes, the shortest being 2/d.

Chem 253, UC, Berkeley

Orientation of plane is determined by a normal vector The miller indices of a lattice plane are the coordination at the reciprocal lattice vector normal to the plane.

22 Chem 253, UC, Berkeley

1 1 1 Plane (hkl)  (hkl)  ( , , ) x1 x2 x3

x2b    B K  ha  kb  lc 2 2 2  a  b  c x1 x2 x3 x3c A C x a 1  bc    a  2 K  AB AC  (x1a  x2b)(x1a  x3c) a (bc) 1 1 1  c a  a  b  c b  2 x1 x2 x3 a (bc)   ab    c  2 K  ha  kb  lc a (bc)

23