Crystallographic Directions and Planes

Crystallographic Directions and Planes

Chem 253, UC, Berkeley Crystallographic Directions And Planes Lattice Directions Individual directions: [uvw] Symmetry-related directions: <uvw> Chem 253, UC, Berkeley 1 Chem 253, UC, Berkeley Crystallographic Directions And Planes Miller Indices: 1. Find the intercepts on the axes in terms of the lattice constant a, b, c 2. Take the reciprocals of these numbers, reduce to the three integers having the same ratio (hkl) Set of symmetry-related planes: {hkl} Chem 253, UC, Berkeley (100) (111) (200) (110) 2 Chem 253, UC, Berkeley Chem 253, UC, Berkeley Crystallographic Directions And Planes Miller-Bravais indices [uvtw], (hkil) t=-(u+v) i=-(h+k) 3 Chem 253, UC, Berkeley In cubic system, [hkl] direction perpendicular to (hkl) plane Chem 253, UC, Berkeley Lattice spacing 1 h2 k 2 l 2 2 2 For cubic system dhkl a 4 Chem 253, UC, Berkeley Chem 253, UC, Berkeley Crystal Structure Analysis X-ray diffraction Electron Diffraction Neutron Diffraction Essence of diffraction: Bragg Diffraction 5 Chem 253, UC, Berkeley Interference fringes Light Constructive Destructive Chem 253, UC, Berkeley Bragg’s Law n SQ QT dhkl sin dhkl sin 2dhkl sin For cubic system: a But not all planes have the dhkl diffraction !!! h2 k 2 l 2 6 Chem 253, UC, Berkeley X-Ray Diffraction E h hc / Mo: 35KeV ~ 0.1-1.4A Cu K 1.54 A Chem 253, UC, Berkeley X-Ray Diffraction 7 Chem 253, UC, Berkeley Powder diffraction X-Ray (200) Chem 253, UC, Berkeley Powder diffraction 8 Chem 253, UC, Berkeley Laue Diffraction Single crystal Chem 253, UC, Berkeley Electron Diffraction 9 Chem 253, UC, Berkeley Layered Cuprates Thin film, growth oriented along c axis Example: La2CuO2 Cu K 1.54 A 2d sin n 2*theta d (hkl) 7.2 12.1 (001) 14.4 6.1 (002) (00l) 22 4.0 (003) c=12.2 A Chem 253, UC, Berkeley c 12.2 A CuO2 LaO LaO CuO2 10 Chem 253, UC, Berkeley Layered Cuprates Example: Ca0.5Sr0.5CuO2 Thin film, growth oriented along c axis 2d sin n 2*theta d (hkl) 12.7 6.96 (001) 26 3.42 (002) (00l) 42.2 2.15 (003) c=6.96 Å Chem 253, UC, Berkeley c Sr 6.96 Å CuO2 Ca 11 Chem 253, UC, Berkeley What we will see in XRD of simple cubic, BCC, FCC? 2 sin A 2 0.5 (BCC); 0.75 (FCC) sin B a dhkl h2 k 2 l 2 Chem 253, UC, Berkeley Reciprocal Lattice n ' d n R R n1 a n2 b n3 c Path Difference: R n R n' R(n n' ) m 2 R (n n' ) 2m 12 Chem 253, UC, Berkeley Reciprocal Lattice ' 2 k k n d R R n a n b n c 1 2 3 2 R (n n' ) 2m R (k k ' ) 2m Correspond to plane wave: ' ei R( k k ) ei2m 1 Chem 253, UC, Berkeley Reciprocal Lattice ' k k n ' d n R R n1 a n2 b n3 c ' ei R( k k ) 1 Laue Condition ' K k k Reciprocal lattice vector iKR e 1 For all R in the Bravais Lattice 13 Chem 253, UC, Berkeley Reciprocal Lattice k ' d K Reciprocal lattice vector R k i R( k k ' ) e 1 Laue Condition ' K k k Reciprocal lattice vector iKR e 1 For all R in the Bravais Lattice Chem 253, UC, Berkeley Reciprocal Lattice iKR e 1 For all R in the Bravais Lattice A reciprocal lattice is defined with reference to a particular Bravias Lattice. a b c Primitive vectors bc a 2 a (bc) c a b 2 a (bc) ab c 2 a (bc) 14 Chem 253, UC, Berkeley Reciprocal Lattice iKR e 1 For all R in the Bravais Lattice bc a 2 a (bc) a a 2 c a Verify: b 2 a (bc) a b 0 ab c 2 a c 0 a (bc) For any K k1a k2b k3c R n1 a n2 b n3 c K R 2 (k1n1 k2n2 k3n3 ) Chem 253, UC, Berkeley Reciprocal Lattice Reciprocal lattice is always one of 14 Bravais Lattice. a a x b a y Simple cubic c a z bc 2 a 2 x a (bc) a c a Simple cubic b 2 2 a (bc) y ab a c 2 2 a (bc) z a 15 Chem 253, UC, Berkeley Primitive Cell of FCC 1 a a(x y) 1 2 1 a a(z y) 2 2 1 a a(z x) 3 2 o •Angle between a1, a2, a3: 60 Chem 253, UC, Berkeley Primitive Cell of BCC •Rhombohedron primitive cell 0.53a 1 a a (x y z109) o28’ •Primitive Translation Vectors: 1 2 1 1 a a ( x y z) a a (x y z) 2 2 3 2 16 Chem 253, UC, Berkeley Reciprocal Lattice Reciprocal lattice is always one of 14 Bravais Lattice. a a (y z) 2 a b (x z) 2 FCC a c (x y) 2 bc 4 1 a 2 (y z x) a (bc) a 2 c a b 2 4 1 a (bc) (x z y) BCC a 2 ab 4 1 c 2 (x y z) a (bc) a 2 Chem 253, UC, Berkeley Reciprocal Lattice BCC FCC Simple hexagonal Simple hexagonal 17 Chem 253, UC, Berkeley bc a 2 a (b c) c a b 2 a (b c) ab c 2 a (bc) Chem 253, UC, Berkeley bc a 2 a (b c) c a b 2 a (b c) ab c 2 a (bc) 18 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 19 Chem 253, UC, Berkeley Wigner-Seitz cells of reciprocal lattice Chem 253, UC, Berkeley 20 Chem 253, UC, Berkeley L X (a 0 0) Chem 253, UC, Berkeley 21 Chem 253, UC, Berkeley Theorem: For any family of lattice planes separated by distance d, there are reciprocal lattice vectors perpendicular to the planes, the shortest being 2/d. Chem 253, UC, Berkeley Orientation of plane is determined by a normal vector The miller indices of a lattice plane are the coordination at the reciprocal lattice vector normal to the plane. 22 Chem 253, UC, Berkeley 1 1 1 Plane (hkl) (hkl) ( , , ) x1 x2 x3 x2b B K ha kb lc 2 2 2 a b c x1 x2 x3 x3c A C x a 1 bc a 2 K AB AC (x1a x2b)(x1a x3c) a (bc) 1 1 1 c a a b c b 2 x1 x2 x3 a (bc) ab c 2 K ha kb lc a (bc) 23.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us