Background Material:1997-11-13 Zinc Compounds As a Federal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title Effect of Ph Values on the Formation and Solubility Of
CORE Metadata, citation and similar papers at core.ac.uk Provided by Kyoto University Research Information Repository Effect of pH Values on the Formation and Solubility of Zinc Title Compounds Takada, Toshio; Kiyama, Masao; Torii, Hideo; Asai, Author(s) Toshihiro; Takano, Mikio; Nakanishi, Norihiko Bulletin of the Institute for Chemical Research, Kyoto Citation University (1978), 56(5): 242-246 Issue Date 1978-12-20 URL http://hdl.handle.net/2433/76795 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull.Inst. Chem.Res., Kyoto Univ., Vol. 56, No. 5, 1978 Effect of pH Values on the Formation and Solubility of Zinc Compounds Toshio TAKADA,Masao KIYAMA,Hideo TORII, Toshihiro AsAI* Mikio TAKANO**,and Norihiko NAKANISHI** ReceivedJuly 31, 1978 Aqueoussuspensions, prepared by mixingthe solution of NaOHand that ofzinc sulfate,chloride or nitrate,were subjected to agingat 25,50, and 70°C. Examinationof the productsby X-ray pow- der diffractionshowed that zinc oxide,basic zinc sulfate, chloride and nitrate are formeddepending mainlyon the pH. Their solubilitiesin the suspensionmedia with differentpH valueswere deter- mined at 25°C. INTRODUCTION In our laboratory, iron oxides and oxide hydroxides were prepared by wet methods such as the hydrolysis and slow oxidation of aqueous solutions of iron salts. The condi- tions for the formation of the oxides and oxide hydroxides') were reported together with their properties.2l The formation of a variety of products must be considered to be due to the difference in the nature -
Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding. -
NBO Applications, 2020
NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020. -
Zinc Fluoride Product Stewardship Summary February 2011
Zinc Fluoride Product Stewardship Summary February 2011 ZnF2 Chemical Name: Zinc Fluoride Chemical Category (if applicable): Metal Halide Synonyms: Zinc difluoride; ZnF2 CAS Number: 7783-49-5 CAS Name: Zinc fluoride EC (EINECS) Number: 232-001-9 Document Number: GPS0041 V1.0 Zinc fluoride (ZnF2) is used in the manufacture of metals, in fluxes, chemical synthesis, and in the manufacture of special glasses.. Exposure can occur at either a ZnF2 manufacturing facility or at other manufacturing, packaging or storage facilities that handle ZnF2. Persons involved in maintenance, sampling and testing activities, or in the loading and unloading of ZnF2 packages are at risk of exposure, but worker exposure can be controlled with the use of proper general mechanical ventilation and personal protective equipment. Workplace exposure limits for fluoride ion have been established for use in worksite safety programs. When ZnF2 is a component of consumer products, users should follow manufacturer’s use and/or label instructions. ZnF2 dusts released to the atmosphere and deposited in soil or surface water in the vicinity of production sites have negligible impact on the environment. Please see the MSDS for additional information. ZnF2 s a nonflammable solid that is stable under normal conditions. Contact of ZnF2 with water or extended skin contact under moist conditions can produce hydrofluoric acid (HF), a very dangerous acid. Breathing ZnF2 dust can irritate the nose, throat, and lungs. Short-term exposure to high concentrations of ZnF2 may cause nausea, vomiting, loss of appetite and weakness. Long-term exposure to ZnF2 may cause deposits of fluorides in bones and teeth, a condition called fluorosis, which may result in pain, disability and discoloration or mottling of teeth. -
Ion in Fluorescence Tuning of Tridentate Pincers: a Review
molecules Review The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review Rosita Diana and Barbara Panunzi * Department of Agriculture, University of Napoli Federico II, via Università 100, 80055 Portici NA, Italy; [email protected] * Correspondence: [email protected] Academic Editors: Jorge Bañuelos Prieto and Ugo Caruso Received: 6 October 2020; Accepted: 25 October 2020; Published: 28 October 2020 Abstract: Tridentate ligands are simple low-cost pincers, easy to synthetize, and able to guarantee stability to the derived complexes. On the other hand, due to its unique mix of structural and optical properties, zinc(II) ion is an excellent candidate to modulate the emission pattern as desired. The present work is an overview of selected articles about zinc(II) complexes showing a tuned fluorescence response with respect to their tridentate ligands. A classification of the tridentate pincers was carried out according to the binding donor atom groups, specifically nitrogen, oxygen, and sulfur donor atoms, and depending on the structure obtained upon coordination. Fluorescence properties of the ligands and the related complexes were compared and discussed both in solution and in the solid state, keeping an eye on possible applications. Keywords: zinc ion; fluorescence; tridentate ligand 1. Introduction Over the past 20 years, fluorescence-responsive compounds are increasingly required for many technological applications, from lighting and switch devices to bio-imaging and analytical probes. Materials based on transition metal complexes were advantageously utilized. In this area, interest is growing in the abundant, less expensive, and environmentally “green” zinc(II) metal cation. Today, science is in great demand to address the challenge of sustainability. -
Evaluation of Antibacterial and Cytocompatible Properties Of
Dental Materials Journal 2020; : – Evaluation of antibacterial and cytocompatible properties of multiple-ion releasing zinc-fluoride glass nanoparticles Erika NISHIDA1, Hirofumi MIYAJI1, Kanako SHITOMI1, Tsutomu SUGAYA1 and Tsukasa AKASAKA2 1 Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W 7, Kita-ku, Sapporo, Hokkaido 060- 8586, Japan 2 Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, N13 W 7, Kita-ku, Sapporo, Hokkaido 060- 8586, Japan Corresponding author, Hirofumi MIYAJI; E-mail: [email protected] Zinc-fluoride glass nanoparticles (Zinc-F) release several ions, such as fluoride, zinc and calcium ions, through acid-base reactions. The aim of this study was to evaluate the antibacterial and cytotoxic properties of Zinc-F. Antibacterial tests showed that a Zinc-F eluting solution significantly reduced the turbidity and colony-forming units ofStreptococcus mutans and Actinomyces naeslundii, compared to that of calcium-fluoroaluminosilicate glass nanoparticles without zinc ions. In live/dead staining, Zinc-F eluate significantly decreased green-stained bacterial cells, indicating live cells, compared with the control (no application). Human dentin coated with Zinc-F showed suppressed S. mutans and A. naeslundii biofilm formation. Additionally, Zinc-F eluate showed low cytotoxic effects in osteoblastic and fibroblastic cells. Therefore, our findings suggested that Zinc-F exhibits antibacterial and biocompatible properties through multiple-ion release. Keywords: Actinomyces naeslundii, Biocompatibility, Dentin, Streptococcus mutans, Zinc-fluoride glass nanoparticles calcium and silicon and a phosphoric acid solution. It is INTRODUCTION assumed that Zinc-F aggregates on the dentin surface to Root caries has become a major problem in elderly close dentinal tubules and release zinc, fluoride, calcium people with exposed tooth roots caused by aging or and silicon ions through acid-base reactions, such as periodontal disease. -
S-Block Amidoboranes: Syntheses, Structures, Reactivity and Applications Cite This: Chem
Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue s-Block amidoboranes: syntheses, structures, reactivity and applications Cite this: Chem. Soc. Rev., 2016, 45, 1112 Tom E. Stennett and Sjoerd Harder* Metal amidoborane compounds of the alkali- and alkaline earth metals have in recent years found applications in diverse disciplines, notably as hydrogen storage materials, as reagents for the reduction of organic functional groups and as catalysts and intermediates in dehydrocoupling reactions. These functions are connected by the organometallic chemistry of the MNR2BH3 group.† This review focusses on central aspects of the s-block amidoborane compounds – their syntheses, structures and reactivity. Well-defined amidoborane complexes of group 2 metals are now available by a variety of solution-phase routes, which has allowed a more detailed analysis of this functional group, which was previously largely confined to solid-state materials chemistry. Structures obtained from X-ray crystallography have begun to provide increased understanding of the fundamental steps of key processes, including amine–borane Creative Commons Attribution 3.0 Unported Licence. dehydrocoupling and hydrogen release from primary and secondary amidoboranes. We review structural parameters and reactivity to rationalise the effects of the metal, nitrogen substituents and supporting Received 10th July 2015 ligands on catalytic performance and dehydrogenative decomposition routes. Mechanistic features of DOI: 10.1039/c5cs00544b key processes involving amidoborane compounds as starting materials or intermediates are discussed, alongside emerging applications such as the use of group 1 metal amidoboranes in synthesis. Finally, the www.rsc.org/chemsocrev future prospects of this vibrant branch of main group chemistry are evaluated. -
ZINC SILICOFLUORIDE CAS Number
Common Name: ZINC SILICOFLUORIDE CAS Number: 16871-71-9 RTK Substance number: 2043 DOT Number: UN 2855 Date: December 2001 ------------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Zinc Silicofluoride can affect you when breathed in and * If you think you are experiencing any work-related health by passing through your skin. problems, see a doctor trained to recognize occupational * Contact can irritate the skin and eyes. Prolonged contact diseases. Take this Fact Sheet with you. can cause skin rash and ulcers, and damage to the eyes. * Breathing Zinc Silicofluoride can irritate the nose, throat WORKPLACE EXPOSURE LIMITS and lungs causing coughing, wheezing and/or shortness of The following exposure limits are for Fluoride: (measured as breath. Fluorine): * Very high exposure can cause Fluoride poisoning with stomach pain, weakness, convulsions, collapse and death. OSHA: The legal airborne permissible exposure limit * Repeated high exposure can cause deposits of Fluorides in (PEL) is 2.5 mg/m3 averaged over an 8-hour the bones and teeth, a condition called “Fluorosis.” This workshift. may cause pain, disability and mottling of the teeth. * The above health effects do NOT occur at the level of NIOSH: The recommended airborne exposure limit is Fluoride used in water for preventing cavities in teeth. 2.5 mg/m3 averaged over a 10-hour workshift. * CONSULT THE NEW JERSEY DEPARTMENT OF HEALTH AND SENIOR SERVICES HAZARDOUS ACGIH: The recommended airborne exposure limit is SUBSTANCE FACT SHEET ON FLUORINE. 2.5 mg/m3 averaged over an 8-hour workshift. IDENTIFICATION * The above exposure limits are for air levels only. When Zinc Silicofluoride is a white, sand-like powder. -
Flexible Solar Cells
Flexible Solar Cells A Major Qualifying Project Submitted to the Faculty Of Worcester Polytechnic Institute In Partial Fulfillment of the requirements for the Degree in Bachelor of Science In Mechanical Engineering By Francis LaRovere Edward Peglow Michael McMahon Project Advisor Professor Pratap Rao, Advisor This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its w ebsite without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. 1 Table of Contents Table of Figures ............................................................................................................................................. 5 Table of Tables .............................................................................................................................................. 6 Acknowledgments ......................................................................................................................................... 7 Abstract ......................................................................................................................................................... 8 1. Introduction .............................................................................................................................................. 9 2. Scope ...................................................................................................................................................... -
United States Patent Office Patented June 25, 1963
3,095,356 United States Patent Office Patented June 25, 1963 1. 2 3,095,356 of fluoride uptake by the teeth. Soluble fluorides are DENTIFRICE COMPRISING INSOLUBLE SODIUM found to be taken up to a greater extent when these metal METAPHOSPHATE AND A CADMUM, TN, saits are also present with the fluoride. The proportion ZINC, MANGANESE OR IRON COMPOUND TO of the fluorides, such as aluminum, tin, or sodium fluoride INHIBIT CALCUM ON SEQUESTERNG employed in the practice of the present invention is in the Henry V. Moss, Clayton, Mo, assignor to Monsanto range of 0.05 to 1% by weight of the dentifrice composi Chemical Company, St. Louis, Mo., a corporation of tion. However, the total proportion of metal compounds Delaware w of the group of cadmium, tin, zinc, manganese, alumi No Drawing. Filed Feb. 20, 1956, Ser. No. 566,353 num and iron which are present in the dentifrice is within 11 Claims. (CI. 167-93) 10 the broader range of 0.05 to 50 weight percent. This invention relates to polishing compositions suitable According to one of the present theories as to the for use as a dentifrice base and particularly to those com molecular aggregation of phosphate salts, the insoluble positions which contain the insoluble form of sodium sodium metaphosphate containing the usual impurities, metaphosphate as an ingredient thereof. may exist as a chain-type of molecular structure, and also An object of the present invention is the provision of 5 in the form of relatively short-chain polyphosphates. Ac an improved identifice. - cording to this theory, the presently employed metal com The use of the so-called insoluble form of sodium pounds control the sequestering action of polyphosphates, metaphosphate in finely divided form has been proposed thereby controlling the type of molecular structures pre as a dentifrice. -
UNITED STATES PATENT OFFICE 2,56,31 METHOD of REDUCING and by DRO GENATING CHEMICA, COMPOUNDS by REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E
Patented Nov. 27, 1951 2,576,31 UNITED STATES PATENT OFFICE 2,56,31 METHOD OF REDUCING AND BY DRO GENATING CHEMICA, COMPOUNDS BY REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E. Schlesirager and Albert E. Finholt, Chicago, Ill.; said Schlesinger assignor of one fourth to. Edaa, M. Schlesinger and said Fin holt assignor of one-fourth to Marion H. Finholt No Drawing. Application June 3, 1947, Serial No. 752,286 2 (Cairns. (C. 260-638) 2 This invention relates to methods of making LiAlH4. Although this new compound will be aluminum-containing hydrides and the reactions called lithium aluminum hydride in the present thereof, and also relates to products prepared by application, it may also be called lithium alumi said methods. nohydride or lithium tetrahydroaluminide. In This application is a continuation-in-part of one method of making lithium aluminum hydride, our copending application Serial No. 717,312, filed lithium hydride is reacted with an aluminum December 19, 1946, now Patent No. 2,567,972, halide such as aluminum chloride in the presence issued September 18, 1951. of a suitable liquid medium such as an ether. If We have discovered that these compounds, es the reagents are mixed in the proportions of the pecially the ether soluble lithium aluminum hy 0 following equation, or if an excess of lithium hy dride, are extremely useful chemical reagents. dride is used, the reaction proceeds as follows: - They may be employed for replacing halogens or Organic radicals by hydrogen in a great variety 4Li H--AlCl3->LiAlH4--3LiCl of compounds. As a result, their discovery has led to new methods, safer, more convenient, and 16 The liquid medium used is one in which one of more efficient than those hitherto known, for pro the reaction products, e. -
Material Safety Data Sheet Zinc Fluoride MSDS# 04642
Material Safety Data Sheet Zinc fluoride MSDS# 04642 Section 1 - Chemical Product and Company Identification MSDS Name: Zinc fluoride Catalog AC194920000, AC194920250, AC194922500, AC363910000, AC363910250, AC363912500 Numbers: AC363912500 Synonyms: Zinc difluoride. Acros Organics BVBA Company Identification: Janssen Pharmaceuticalaan 3a 2440 Geel, Belgium Acros Organics Company Identification: (USA) One Reagent Lane Fair Lawn, NJ 07410 For information in the US, call: 800-ACROS-01 For information in Europe, call: +32 14 57 52 11 Emergency Number, Europe: +32 14 57 52 99 Emergency Number US: 201-796-7100 CHEMTREC Phone Number, US: 800-424-9300 CHEMTREC Phone Number, Europe: 703-527-3887 Section 2 - Composition, Information on Ingredients ---------------------------------------- CAS#: 7783-49-5 Chemical Name: Zinc fluoride %: >98 EINECS#: 232-001-9 ---------------------------------------- Hazard Symbols: XI Risk Phrases: 36/37/38 Section 3 - Hazards Identification EMERGENCY OVERVIEW Warning! Causes eye, skin, and respiratory tract irritation. Target Organs: Respiratory system, skeletal structures, eyes, skin. Potential Health Effects Eye: Causes eye irritation. May cause eye burns. Skin: Causes skin irritation. May be harmful if absorbed through the skin. Ingestion: May cause irritation of the digestive tract. May be harmful if swallowed. Inhalation: Causes respiratory tract irritation. May be harmful if inhaled. Chronic inhalation and ingestion may cause chronic fluoride poisoning (fluorosis) characterized by weight loss, Chronic: weakness, anemia, brittle bones, and stiff joints. Section 4 - First Aid Measures Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get Eyes: medical aid. Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated Skin: clothing and shoes.