The Presentation Template

Total Page:16

File Type:pdf, Size:1020Kb

The Presentation Template School of Earth & Environment FACULTY OF ENVIRONMENT The Chemical Composition of Metasomatic Fluids in the Crust Bruce Yardley School of Earth and Environment, University of Leeds, UK Written during the tenure of a Humboldt Award from the AvH Foundation Metasomatism: Some Basics Classically, Korzhinski divided metasomatism into Infiltration Metasomatism and Diffusion Metasomatism, according to the inferred transport mechanism for dissolved components Implicitly, this talk is concerned almost entirely with Infiltration Metasomatism In Infiltration Metasomatism, some components are added or removed in solution (mobile components) while others are derived from the host rock and do not move (immobile components) The Korzhinski Phase Rule states that the number of phases in a metasomatic rock is related to the number of immobile components, not the total number of components: metasomatic rocks have fewer phases Examples of flow systems that can trigger metasomatism Fluid that is in equilibrium with one type of rock flows into a different rock type. Fluid moves through a uniform rock type to regions at different temperatures A fluid exsolves from a parent fluid or melt and moves independently What sorts of fluids cause metasomatism? In principle, any fluid that migrates into a rock volume where it is not at equilibrium will react with its new host until equilibrium is established. Whether or not this results in a significant change to the composition of the rock (i.e. causes metasomatism) will depend on the quantity of fluid and its dissolved load. •Concentrated fluids have the potential to cause more metasomatism than dilute ones. •Systems that experience large fluid fluxes are most likely to undergo metasomatism Controls on Fluid Compositions Buffered Fluids: Saturated solutions of the rock that hosts them Mass Limited Fluids (Houston et al., 2011, Marine & Petroleum Geology): Concentrated fluids whose dissolved load dominates the material available for exchange in the host rock, so that the buffering capacity of the host is exceeded, usually brines in highly porous rocks rich in quartz. Kinetically Limited Fluids: Fluids whose composition is dominated by fast-reacting minerals in the host but does not come to equilibrium with the full assemblage The Dominant Metasomatic System through Earth History Sea floor hydrothermal circulation In some sedimentary basins, including many oilfields, sandstones have been heavily metasomatised ; for example, very few North Sea sandstones contain intermediate plagioclase, there is albite and K-feldspar. The Dominant Sources of Metasomatic Fluid In addition to seawater, brines that form during evaporation and sink into the sediment are a potent metasomatic fluid Deep-Penetrating Basinal Fluids Basinal fluids commonly penetrate the crystalline rocks of their basement. In this example, from the Precambrian Modum complex of west Norway, the fluid inclusions which fluoresce in UV light are of hydrocarbons derived from the overlying Caledonian foreland basin and derived from the Alum Shale. Munz et al., 1995, GCA, 2002, Geofluids Gleeson et al., 2003, Geofluids Deep-Penetrating Basinal Fluids An example from the Massif Central (Susannah Bruce, unpubl. PhD thesis): Fluid inclusions in veins from both Jurassic sediments of the cover and underlying Palaeozoic metasediments lie along the same evaporation trend for Br-Cl. Igneous Fluids A classic example of metasomatism in an igneous setting is the formation of greisen from granite, with the quartz-muscovite – rich greisen flanking a central vein with tourmaline. Cligga Head, Cornwall Skarns are one of the most important classes of metasomatic rocks and can be developed in an igneous or a purely metamorphic setting. Permeability and Fluid Flux Metasomatism is dependent on focussed fluid flow, and this requires permeable pathways to be sustained for long enough for sufficient fluid flow to take place to produce metasomatic effects. •Permeability may be linked to fractures and these can be dynamically regenerated by tectonic or igneous activity. •Some sedimentary rocks may have an initial intrinsic permeability - likely to reduce as a result of metasomatic mineral growth. •There are mineral reactions that result in a reduction of solid volume, and hence can produce porosity if they proceed faster than the porosity collapses by creep. Large fluid fluxes most likely arise in near-hydrostatically pressured systems (convection, gravity-driven flow) because fluid is recycled. These can drive metasomatism with quite dilute fluids. Overpressured fluids from magma crystallisation or metamorphic reactions are most likely to cause metasomatism if they are concentrated solutions and released rapidly so that flow is focussed. Rates of Fluid Production Dehydration reactions are strongly endothermic – how fast they give off water depends on how fast they are heated, just like boiling water on a stove. But rocks are very slow to change temperature, and so even in contact metamorphism at mid-crustal depths, heating rates are likely less than 10 degrees per thousand years. Rates of Barrovian regional metamorphism appear to be around 8 – 15oC/Ma based on geochronology. Extensive dehydration will result in slower heating rates. This means that even narrow temperature windows, such as at the greenschist – amphibolite facies transition, will take 5 – 10 Ma to pass through. These times are very long compared to time scales of deformation, so long term coherent focussed flow is unlikely. Reaction-enhanced permeability Nearly pure diopside cores formed from dolomite + quartz, creating porosity which allowed overpressured water to infiltrate. This caused initial corrosion but then overgrowth by Fe-bearing diopside, with the Fe introduced in solution in the infiltrating fluid. Yardley, 2009, Jl Geol Soc The most common example is the development of regional metamorphic skarns due to reaction of silica-saturated water with dolomitic marble. Once initiated, these reactions create porosity and permeability and so become self-accelerating. What are metasomatic fluids like? How can we tell? Theory: Many of the fundamental relationships between mineral stability and fluid chemistry were worked out many years ago through activity diagrams, although absolute concentrations, and even absolute activities were often unknown. Theory continues to be an essential tool to interpolate and extrapolate. Experiment: Hydrothermal experiments not only provide the fundamental data to quantify activity diagrams, they also provide absolute solubility data. Over the past 50 years it has become possible to perform relevant experiments over the entire range of crust and upper mantle conditions. Observations of natural systems: The only way we know what systems to study in the laboratory is by understanding what fluids occur in nature. This includes both studying modern crustal fluids sampled by drilling and investigating ancient fluids preserved in fluid inclusions. This is how we know that most crustal fluids are brines for example – something that makes thermodynamic modelling difficult! What are metasomatic fluids like? - Basics Under crustal conditions, metasomatic fluids are dominated by water, salts (mainly NaCl) and non-polar fluid species (mainly CO2). The presence of salts reduces the solubility of species such as CO2 in water (“salting-out”) Salts also have some impact on silica solubility The composition of metasomatic rocks need have very little in common with the composition of the metasomatic fluid a) 500oC, 50 Mpa b) 800oC, 200 Mpa, c) 500oC, 500 MPa (after Liebscher, 2007) At very high temperatures Above the wet solidus for any lithology, water will dissolve into the melt. If a fluid phase coexists with melt above the wet solidus, it will have a water activity <1. Both CO2-rich and salt rich fluids can fulfill this requirement, and both are known from granulites. Getting water, salt and CO2 all into a single fluid phase is tougher, but happens under mantle conditions. Crustal Fluid Chemistry: the dissolved load At low pressures, fluids are generally dominated by cation exchange equilibria between minerals and chloride salts. With increasing pressure, Al and Si become more important fluid components, but normally high mantle pressures must be reached before the dissolved load becomes more rock-like than salt-like. Exceptionally, large concentrations of other ligands such as F in low Ca evolved magmatic fluids can flux high “rock solubility” under crustal conditions. Quartz Solubility in Crustal Fluids Most crustal fluids are quartz- saturated. Quartz solubility increases with both P and T but under crustal conditions seldom exceeds a few thousand ppm. The solute load is dominated by salts. At mantle pressures (>50km depth), quartz solubility increases and fluids can become more akin to rock solutions. Effects of chloride salts on quartz solubility, from Shmulovich et al., Geofluids, 2006. How salinity determines the metal contents of crustal fluids Plotting Fe against Cl for a wide range of fluids from oilfield waters to fluid inclusions from magmatic ore bodies, there is only a very general positive correlation. In detail however, this correlation is made up of an en-echelon array of parallel trends made up of data for fluids of different temperatures. A plot of the Fe/Cl ratio against 1/T clearly demonstrates that Fe becomes increasingly important with increased temperature. It reaches percent levels in some magmatic brines. Not surprisingly, hydrothermal Iron can be of sedimentary origin,
Recommended publications
  • Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes”
    minerals Editorial Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes” Pavel A. Serov Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia; [email protected] Magmatism, ore genesis and metamorphism are commonly associated processes that define fundamental features of the Earth’s crustal evolution from the earliest Precambrian to Phanerozoic. Basically, the need and importance of studying the role of metamorphic processes in formation and transformation of deposits is of great value when discussing the origin of deposits confined to varied geological settings. In synthesis, the signatures imprinted by metamorphic episodes during the evolution largely indicate complicated and multistage patterns of ore-forming processes, as well as the polygenic nature of the mineralization generated by magmatic, postmagmatic, and metamorphic processes. Rapid industrialization and expanding demand for various types of mineral raw ma- terials require increasing rates of mining operations. The current Special Issue is dedicated to the latest achievements in geochemistry, mineralogy, and geochronology of ore and metamorphic complexes, their interrelation, and the potential for further prospecting. The issue contains six practical and theoretical studies that provide for a better understanding of the age and nature of metamorphic and metasomatic transformations, as well as their contribution to mineralization in various geological complexes. The first article, by Jiang et al. [1], reports results of the first mineralogical–geochemical Citation: Serov, P.A. Editorial for studies of gem-quality nephrite from the major Yinggelike deposit (Xinjiang, NW China). Special Issue “Ore Genesis and The authors used a set of advanced analytical techniques, that is, electron probe microanaly- Metamorphism: Geochemistry, sis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry Mineralogy, and Isotopes”.
    [Show full text]
  • 06Metamorphs.Pdf
    Clicker • The transformation of one rock into another by solid-state Metamorphism and recrystallization is known as Metamorphic Rocks – a) Sedimentation – b) Metamorphism – c) Melting – d) Metasomatism – e) Hydrothermal alteration Metamorphism • Metamorphism is the solid- state transformation of pre- existing rock into texturally or mineralogically distinct new rock as the result of high temperature, high pressure, or both. Diamond is Metamorphic Metamorphism • The mineralogy of a metamorphic rock changes with temperature and pressure. • In general, the highest temperature mineral assemblage is preserved. • It is possible to infer the highest P- T conditions from the mineralogy. 1 Metamorphic Environments Metamorphic Environments • Regional metamorphism • Where do you find metamorphic involves the burial and rocks? metamorphism of entire regions • In the mountains and in continental (hundreds of km2) shield areas. • Contact metamorphism results from local heating adjacent to • Why? igneous intrusions. (several meters) • Because elsewhere they are covered by sediments. Metamorphic Environments Regional Metamorphism • Because the tectonic forces required to bury, metamorphose, and re- exhume entire regions are slow, • most regionally metamorphosed terranes are old (> 500 MY), and • most Precambrian (> 500 MY) terranes are metamorphosed. Regional Metamorphism Regional Metamorphism • Regional metamorphism is typically • Regional metamorphism is typically isochemical (composition of rock isochemical (composition of rock does not change), although water does not change), although water may be lost. may be lost. • Metasomatism is a term for non- • Metasomatism is a term for non- isochemical metamorphism. isochemical metamorphism. • Contact metamorphism is typically • Contact metamorphism is typically metasomatic. metasomatic. 2 Effect of Increasing Conditions of Metamorphism Temperature • Changing the mineralogy of a sediment requires temperature > • Increases the atomic vibrations 300ºC and pressures > 2000 • Decreases the density (thermal atmospheres (~6 km deep).
    [Show full text]
  • Metasomatic Alteration Associated with Regional Metamorphism: an Example from the Willyama Supergroup, South Australia
    Lithos 54Ž. 2000 33±62 www.elsevier.nlrlocaterlithos Metasomatic alteration associated with regional metamorphism: an example from the Willyama Supergroup, South Australia A.J.R. Kent a,),1, P.M. Ashley a,2, C.M. Fanning b,3 a DiÕision of Earth Sciences, UniÕersity of New England, Armidale, NSW, 2351, Australia b Research School of Earth Sciences, The Australian National UniÕersity, Canberra, ACT, 0200, Australia Received 20 October 1998; accepted 12 May 2000 Abstract The Olary Domain, part of the Curnamona Province, a major Proterozoic terrane located within eastern South Australia and western New South Wales, Australia, is an excellent example of geological region that has been significantly altered by metasomatic mass-transfer processes associated with regional metamorphism. Examples of metasomatically altered rocks in the Olary Domain are ubiquitous and include garnet±epidote-rich alteration zones, clinopyroxene- and actinolite-matrix breccias, replacement ironstones and albite-rich alteration zones in quartzofeldspathic metasediments and intrusive rocks. Metasomatism is typically associated with formation of calcic, sodic andror iron-rich alteration zones and development of oxidised mineral assemblages containing one or more of the following: quartz, albite, actinolite±hornblende, andradite-rich garnet, epidote, magnetite, hematite and aegerine-bearing clinopyroxene. Detailed study of one widespread style of metasomatic alteration, garnet±epidote-rich alteration zones in calc-silicate host rocks, provides detailed information on the timing of metasomatism, the conditions under which alteration occurred, and the nature and origin of the metasomatic fluids. Garnet±epidote-bearing zones exhibit features such as breccias, veins, fracture-controlled alteration, open space fillings and massive replacement of pre-existing calc-silicate rock consistent with formation at locally high fluid pressures and fluidrrock ratios.
    [Show full text]
  • The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
    ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis.
    [Show full text]
  • Emplacement Mechanisms and Structural Influences of A
    R-08-138 Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks – a principal study with application to the Götemar and Uthammar granites Site-descriptive modelling SDM-Site Laxemar Alexander R Cruden Department of Geology, University of Toronto December 2008 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00 CM Gruppen AB, Bromma, 2009 ISSN 1402-3091 Tänd ett lager: SKB Rapport R-08-138 P, R eller TR. Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks – a principal study with application to the Götemar and Uthammar granites Site-descriptive modelling SDM-Site Laxemar Alexander R Cruden Department of Geology, University of Toronto December 2008 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se Abstract The c. 1.80 Ga old bedrock in the Laxemar-Simpevarp area, which is the focus of the site investigation at Oskarshamn, is dominated by intrusive rocks belonging to the c. 1.86–1.65 Ga Transscandinavian Igneous Belt (TIB). However, the site investigation area is situated in between two c. 1.45 Ga old anorogenic granites, the Götemar granite in the north and the Uthammar granite in the south. This study evaluates the emplacement mechanism of these intrusions and their structural influence on the older bedrock.
    [Show full text]
  • Evidence for a Carbonatite-Influenced Source Assemblage for Intraplate
    minerals Article Evidence for a Carbonatite-Influenced Source Assemblage for Intraplate Basalts from the Buckland Volcanic Province, Queensland, Australia Joshua J. Shea * and Stephen F. Foley Department Earth and Planetary Sciences and ARC Centre of Excellence for Core to Crust Fluid Systems, Macquarie University, North Ryde 2109, New South Wales, Australia * Correspondence: [email protected] Received: 20 June 2019; Accepted: 7 September 2019; Published: 10 September 2019 Abstract: Eastern Australia contains a widespread suite of primitive (MgO 7.5 wt.%) intraplate ≥ basaltic provinces, including those sited along the longest continental hotspot track on Earth ( 2000 km), the Cosgrove track. The Buckland volcanic province is the most southerly basaltic ≈ province on the Cosgrove track before a >1600 km stretch that contains only sparse leucitite volcanism. Buckland is also situated just northeast of the edge of thick cratonic lithosphere where it transitions to a thinner continental lithosphere (<110 km) to the east, which may influence the production of plume-derived melts. Here, analysis of minor and trace elements in olivines in alkali basalts and basanites from the Buckland Province are combined with whole-rock compositions to elucidate the mantle source assemblages, and to calibrate minor and trace element indicators in olivine for application to source mineralogy. Olivine xenocrysts show element concentration ranges typical for peridotites; Mn and Al concentrations indicate that the ambient mantle is spinel, rather than garnet, peridotite. High modal pyroxene content is indicated by high Ni, Zn/Fe, and Fe/Mn in olivines, while high Ti/Sc is consistent with amphibole in the source. Residual phlogopite in the source of the basanites is indicated by low K/Nb in whole rocks, while apatite contains high P2O5 and low Rb/Sr ( 0.015) and Sr/La ( 13).
    [Show full text]
  • Origin of Ores and Mineral Deposits (Part 2)
    Origin of ores and mineral deposits (part 2) 3- Metamorphism: Metamorphic mineral deposits are transformed alteration product of preexisting igneous or sedimentary materials. The reconstruction occurs under increasing pressure and temperature caused by igneous intrusive body or by tectonic events. There are two types of metamorphism; contact and regional metamorphism. Contact metamorphism is a type of metamorphism where rock minerals and texture are changed, mainly by heat, due to contact with magma. The heat from a body of magma in the upper crust can create a very dynamic situation with geologically interesting and economically important implications. The main process is heat transfer from the pluton to the surrounding rock, creating a zone of contact metamorphism called metamorphic aureole (Figure 1). Figure 1: An illustration of contact metamorphism. Metamorphic mineral deposits are formed due to regional metamorphic process and hosted by metamorphic rocks. Minerals like garnet, kyanite, sillimanite, wollastonite, graphite, and andalusite are end products of metamorphic process. An important example of the metamorphic mineral deposits is the asbestos deposits. Asbestos is a generic term referring to six types of naturally occurring mineral fibers that are or have been commercially exploited. These fibers belong to two mineral groups: serpentines and amphiboles. The serpentine group contains a single asbestiform variety: chrysotile. There are five asbestiform varieties of amphiboles: anthophyllite asbestos, grunerite asbestos (amosite),
    [Show full text]
  • Contact Metasomatic Zone and Massive Ore Body in Manganese Epithermal Deposits of the Jokoku Mine, Hokkaido, Title Japan
    Contact Metasomatic Zone and Massive Ore Body in Manganese Epithermal Deposits of the Jokoku Mine, Hokkaido, Title Japan Author(s) Hariya, Yu; Hasegawa, Kiyoshi Citation 北海道大学理学部紀要, 19(1-2), 265-272 Issue Date 1979-03 Doc URL http://hdl.handle.net/2115/36689 Type bulletin (article) File Information 19_1-2_p265-272.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Jour. Fac. Sci., Hokkaido Univ., Ser. IV, vol. 19, nos. 1-2, March, 1979, pp. 265-272. CONTACT METASOMATIC ZONE AND MASSIVE ORE BODY IN MANGANESE EPITHERMAL DEPOSITS OF THE JOKOKU MINE, HOKKAIDO, JAPAN by Yu Hariya aI)d Kiyoshi Hasegawa* (with 3 figure s, 3 tables and I plate) (Contribution from the Department of Geology and Mineralogy, Faculty of Science, Hokkaido University, No. 1641) Abstract Recently contact metaso matic zone and massive ore bodies were found in the manganese epithermal deposits of the Jokoku mine. Various kinds of contact minerals occur in the contact metasomatic zone which is formed by replacement of the Palaeozoic limestone. The massive ore bodies also formed by replacement of the limestone. These ore bodies are made up of carbonate ore consisting predominantly of rhodochrosite. associated with dolomite, calcite, kutnahorite and small amount of sulphide minerals. The parts of the Jokoku mine studied here belong to the metasomatic deposit type, which has been influenced by early hydrothermal solution. Introduction The lokoku mine , located in Oshima Penninsula of South·western Hokkaido, is one of the largest manganese deposits in lapan. The deposits belong to fissure·filling vein type, mostly deposited under tensional condition and some parts have also net work structure, genetically related to the Miocene igneous activity.
    [Show full text]
  • Explanatory Notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania
    Tasmanian Geological Survey TASMANIA DEVELOPMENT Record 1995/01 AND RESOURCES Tasgo NGMA Project Sub-Project 1: Geological Synthesis Explanatory notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania by D. B. Seymour and C. R. Calver Tasmanian Geological Survey Record 1995/01 1 CONTENTS INTRODUCTION ..................................................................................................................... 4 KING ISLAND.......................................................................................................................... 5 ?Mesoproterozoic ............................................................................................................... 5 Neoproterozoic orogenesis and granitoid intrusive rocks ................................................ 5 ?Neoproterozoic sequences ................................................................................................ 5 Early Carboniferous granitoid intrusive rocks ................................................................ 6 ROCKY CAPE ELEMENT....................................................................................................... 7 ?Mesoproterozoic: Rocky Cape Group ............................................................................... 7 Burnie and Oonah Formations ........................................................................................ 7 Smithton Synclinorium .................................................................................................... 7 Ahrberg Group .................................................................................................................
    [Show full text]
  • The Metamorphism of the Cambrian Basic Volcanic Rocks of Tasmania and Its Relationship to the Geosynclinal Environ­ Ment
    PAPlilllS AND PROCEEDINGS OF THE ROYAL SOCI>lTY OF TASMANIA, VOLUMB 88 The Metamorphism of the Cambrian Basic Volcanic Rocks of Tasmania and its Relationship to the Geosynclinal Environ­ ment By BERYL SCOTT, B.SC., PH.D. (With 4 Plates and 2 Text Ji'igwres) ABSTRACT A spilitic suite comprising picrite basalts, spilites, keratophyres, albite dolerites and associated pyroclastics of Middle and Upper Cambrian age, outcrops on the North-Vi/est and West Coast of Tasmania. The spilites and keratophyres are considered to have been normal basalts which later suffered soda metasomatism as a result of geosynclinal depOl::,ition and orogeny. Hydrothermal alteration of the volcanics has also given rise to a variety of other rock types which includes porphyries, variolite, spherulitic quartz rock and jasper. INTRODlJCTION While the author was resident in Tasmania, a detailed petrographie study was made of the Cambrian volcanle rocks of the State and the results were submitted to the University of Tasmania as a thesis for the degree of Doctor of Philosophy in 1952. Several papers have already been published on this work (Scott, 1952), but after leaving Tasmania it was thought necessary to publish a general summary of the whole study even though the interpretations may not be eonelusive. Mueh confusion exists in the literature dealing with the volcanics of the 'Vest Coast of Tasmania. The igneous rocks have been referred to as porphyroids, keratophyres, quartz and feldspar porphyries, andesites, melaphyres and syenites. The present author believes that the greater part of the volcanics was essentially basic in composition, probably basalts and porphyritic basalts, with or without amygdales, and their corresponding pyroclastics.
    [Show full text]
  • Metamorphic Rocks Metamorphism • Meta = Change, Greek • Morph
    Metamorphic Rocks Metamorphism • Meta = change, Greek • Morph = form, Greek • Metamorphic rocks form from other rocks (protolith) by essentially solid-state changes in mineralogy and/or texture as a result of a change in chemical and/or physical environment. Metamorphism is characterized by: • phase changes - growth of new physically discrete, separable components (minerals), either with or without (isochemical) addition of new material; and/or • textural changes - recrystallization, alignment and/or grain size, usually as a result of unequal application of stress Agents of Metamorphism • Have been recrystallized as the result of – Temperature – Pressure • Confining pressure (compressive stress) • Directed pressure (differential stress), including shearing – Chemical Activity • the composition of pore fluids Pore Fluids • A fluid that occupies the empty spaces between particles • May come from – Partial melting of the rock – Groundwater Metamorphic Processes • Recrystallization • New Minerals-Index Minerals – Neomorphism: transformation of one mineral into a new one, depending upon its new environment. – Metasomatism: metamorphism coupled with the introduction of ions from an external source. (Ex: Water) • Mineral Orientation • Mineral Segregation Metamorphic Processes-How it is Done • Temperature changes – Below 200° not much happens – Metastability can occur – Migmatite can form from igneous rocks • Half igneous, half metamorphic Pressure Changes • Makes minerals pack themselves closer (mineral segregation) Chemically Active Fluids
    [Show full text]
  • 7. K-Differentiation by Magmatic and Metasomatic Processes
    1 ISSN 1526-5757 7. K-DIFFERENTIATION BY MAGMATIC AND METASOMATIC PROCESSES Lorence G. Collins email: [email protected] February 3, 1997 The granitic crust began to form about 2.5 billion years ago when potassium (K) was abundantly released from the mantle and rose toward the Earth's surface. Today, the mantle still contains about 0.79% K2O below 120 km depth, but between depths of 40 to 120 km, the mantle is depleted in K, containing only about 0.10% K2O. Above 40 km depth, the average K2O content increases gradually to about 3.5% at the Earth's surface (Larin, 1992). Upward movement of escaping water and other volatile gases from the mantle likely initiated and enabled K-differentiation during Precambrian time. Both magmatic and metasomatic processes in the crust have subsequently further enhanced this differentiation. In magmatic processes, dense, early-crystallized pyroxenes, olivine, and calcic plagioclase, which lack K, settle to the bottom of magma chambers, and left-over melts containing K were displaced upward to the chamber tops. In this way, K was concentrated there to form biotite-bearing gabbro, diorite, and/or tonalite or biotite- and K-feldspar-bearing granodiorite, quartz monzonite, and/or granite. The combination of all these upward K-displacements (differentiation) resulted in more felsic and K-rich rocks at higher levels in the Earth's crust and more mafic and K-poor rocks at lower levels. Further enrichment of K also occurs in late stages of magma crystallization. Residual hydrothermal fluids, enriched in K, Na, and Fe relative to Mg and Ca, can carry K upward along boundaries of early-formed crystals or through fractures in already crystallized portions of a pluton.
    [Show full text]