Alaskan King Crab: Bering Sea Distributions and a Parasitic Castrator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Pribilof Islands Golden King Crab May 2012 Crab SAFE Report Chapter
Pribilof Islands Golden King Crab May 2012 Crab SAFE Report Chapter (25 April 2012 Draft) Douglas Pengilly, ADF&G, Kodiak Executive Summary 1. Stock: Pribilof Islands (Pribilof District) golden king crab Lithodes aequispinus 2. Catches: Commercial fishing for golden king crab in the Pribilof District has been concentrated in the Pribilof Canyon. The fishing season for this stock has been defined as a calendar year (as opposed to a “crab fishery year”) following the close of the 1983/84 season. The domestic fishery developed in the 1982/83 season, although some limited fishing occurred at least as early as 1981/82. Peak harvest occurred in the 1983/84 season with a retained catch of 0.856-million pounds (388 t) by 50 vessels. Since then, participation in the fishery has been sporadic and annually retained catch has been variable, from 0 pounds in the nine years that no vessels participated (1984, 1986, 1990–1992, 2006–2009) up to a maximum of 0.342-million pounds (155 t) in 1995, when seven vessels made landings. The fishery is not rationalized. There is no state harvest strategy in regulation. A guideline harvest level (GHL) was first established for the fishery in 1999 at 0.200-million pounds (91 t) and has been managed towards a GHL of 0.150- million pounds (68 t) since 2000. No vessels participated in the directed fishery and no landings were made during 2006–2009. One vessel landed catch in 2010 and two vessels landed catch in 2011; directed fishery catch cannot be reported in those two years under the confidentiality requirements of Sec. -
Biological Perspectives on Crab Management in Alaska: an Oral Report to the Alaska Board of Fisheries
BIOLOGICAL PERSPECTIVES ON CRAB MANAGEMENT IN ALASKA: AN ORAL REPORT TO THE ALASKA BOARD OF FISHERIES BY Gordon H. Kruse Regional Information Report No. 5593-02 Alaska Department of Fish & Game Division of Commercial Fisheries P.O. Box 25526 Juneau, Alaska 99802-5526 January 31, 1993 BIOLOGICAL PERSPECTIVES ON CRAB MANAGEMENT IN ALASKA: AN ORAL REPORT TO THE ALASKA BOARD OF FISHERIES BY Gordon H. Kruse Regional Information ~eportlNo. 5J93-02 Alaska Department of Fish & Game Division of Commercial Fisheries P.O. Box 25526 Juneau., Alaska 99802-5526 January 31, 1993 l~heRegional Information Report Series was established in 1987 to provide an in£ormat ion access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Division of Commercial Fisheries. FORWARD We thought that we would begin the Board meeting with an overview of biology and management of crabs in Alaska. This talk is similar to a presentation that I have given at a couple of recent scientific meetings. One meeting was the International Symposium on Management Strategies for Exploited Fish Populations in Anchorage during October 21-24, 1992, and the other was the annual meeting of the Alaska Chapter of the American Fisheries Society in Valdez, Alaska, during November 16-19, 1992. -
Growth of Juvenile Golden King Crabs Lithodes Aequispinus in the Laboratory
Growth of Juvenile Golden King Crabs in the Laboratory • Paul and Paul 133 Growth of Juvenile Golden King Crabs Lithodes aequispinus in the Laboratory A. J. Paul and J. M. Paul Reprinted from the Alaska Fishery Research Bulletin Vol. 8 No. 2, Winter 2001 The Alaska Fisheries Research Bulletin can be found on the World Wide Web at URL: http://www.state.ak.us/adfg/geninfo/pubs/afrb/afrbhome.htm GrowthAlaska Fishery of Juvenile Research Golden Bulletin King 8(2) Crabs 135–138. in the 2001.Laboratory • Paul and Paul Notes135 Copyright © 2001 by the Alaska Department of Fish and Game Growth of Juvenile Golden King Crabs Lithodes aequispinus in the Laboratory A. J. Paul and J. M. Paul ABSTRACT: Growth observations were made for juvenile male golden king crabs Lithodes aequispinus with carapace lengths (CL) of 2 to 35 mm to improve our understanding of the recruitment process. Gravid females were captured in Prince William Sound, Alaska, and juveniles were reared in the laboratory at 3°–10°C to obtain information on growth per molt and intermolt duration. The equation describing the increase in CL for crabs 2 to 35 mm CL was: New CL mm = Initial CL (1.25) + 0.14; r2 = 0.99, n = 76. The average increase in CL after molting was 28% (SD = 8%), and the corresponding value for chela height (CH) was 33% (SD = 17%). The intermolt duration, in units of degree days, of crabs 2 to 35 mm CL was described by the equation: Intermolt Duration = Initial CL mm (16.32) + 259; r2 = 0.76. -
Challenging the Cold: Crabs Reconquer the Antarctic
Ecology, 86(3), 2005, pp. 619±625 q 2005 by the Ecological Society of America CHALLENGING THE COLD: CRABS RECONQUER THE ANTARCTIC SVEN THATJE,1,5 KLAUS ANGER,2 JAVIER A. CALCAGNO,3 GUSTAVO A. LOVRICH,4 HANS-OTTO POÈ RTNER,1 AND WOLF E. ARNTZ1 1Alfred Wegener Institute for Polar and Marine Research, Columbusstr. D-27568 Bremerhaven, Germany 2Biologische Anstalt Helgoland, Foundation Alfred Wegener Institute, Helgoland, Germany 3Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente GuÈiraldes 2160, C1428EHA, Buenos Aires, Argentina 4Consejo Nacional de Investigaciones Cientõ®cas y TeÂcnicas, Centro Austral de Investigaciones Cientõ®cas, CC 92, V9410BFD Ushuaia, Tierra del Fuego, Argentina Abstract. Recent records of lithodid crabs in deeper waters off the Antarctic continental slope raised the question of the return of crabs to Antarctic waters, following their extinction in the lower Miocene ;15 million years ago. Antarctic cooling may be responsible for the impoverishment of the marine high Antarctic decapod fauna, presently comprising only ®ve benthic shrimp species. Effects of polar conditions on marine life, including lowered metabolic rates and short seasonal food availability, are discussed as main evolutionary driving forces shaping Antarctic diversity. In particular, planktotrophic larval stages should be vulnerable to the mismatch of prolonged development and short periods of food avail- ability, selecting against complex life cycles. We hypothesize that larval lecithotrophy and cold tolerance, as recently observed in Subantarctic lithodids, represent, together with other adaptations in the adults, key features among the life-history adaptations of lithodids, potentially enabling them to conquer polar ecosystems. The return of benthic top predators to high Antarctic waters under conditions of climate change would considerably alter the benthic communities. -
Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI
The Great Lakes Entomologist Volume 35 Number 1 - Spring/Summer 2002 Number 1 - Article 10 Spring/Summer 2002 April 2002 Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI. Miscellaneous Small Families (Lepidoptera) Edward G. Voss University of Michigan Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Voss, Edward G. 2002. "Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI. Miscellaneous Small Families (Lepidoptera)," The Great Lakes Entomologist, vol 35 (1) Available at: https://scholar.valpo.edu/tgle/vol35/iss1/10 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Voss: Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), 2002 THE GREAT LAKES ENTOMOLOGIST 53 MOTHS OF THE DOUGLAS LAKE REGION (EMMET AND CHEBOYGAN COUNTIES), MICHIGAN: VI. MISCELLANEOUS SMALL FAMILIES (LEPIDOPTERA) Edward G. Voss1 ABSTRACT Forty-seven species in nine families of Lepidoptera (Hepialidae, Psychidae, Alucitidae, Sesiidae, Cossidae, Limacodidae, Thyrididae, Pterophoridae, Epiplemi- dae) are listed with earliest and latest recorded flight dates in Emmet and Cheboy- gan counties, which share the northern tip of the Lower Peninsula of Michigan. The records are from the principal institutional and private collections of Michigan moths and continue the documented listing of Lepidoptera in the region. ____________________ Emmet and Cheboygan counties share the northern tip of the Lower Peninsula of Michigan, the former bordered on the west by Lake Michigan and the latter, on the east by Lake Huron. -
Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene
Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene Zhiling Guo1,2, Sheng Liu1, Simin Hu1, Tao Li1, Yousong Huang4, Guangxing Liu4, Huan Zhang2,4*, Senjie Lin2,3* 1 Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, Guangdong, China, 2 Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America, 3 Marine Biodiversity and Global Change Laboratory, Xiamen University, Xiamen, Fujian, China, 4 Department of Environmental Science, Ocean University of China, Qingdao, Shandong, China Abstract Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)- based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/ Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. -
Symposium Full Program
11.4 Center for Condensed Matter Sciences, NTU 11.5-6 Howard Civil Service International House 2019 Organizer Ecological Engineering Research Center, National Taiwan University Co-Organizers College of Bioresources and Agriculture, National Taiwan University Wisdom Informatics Solutions for Environment Co., Ltd Symposium Program Sponsors Biodiversity Research Center, Academia Sinica The Japanese Association of Benthology Marine National Park Headquartrers, Taiwan Ministry of Science and Technology, Taiwan The Plankton Society of Japan Ocean Conversation Administration, Ocean Affairs Council, Taiwan Contents Welcome Messages .........................................................................2 More Welcomes and Greetings from Previous AMBS Chairmans .................................................3 Symposium Schedule ......................................................................7 Conference Information ................................................................8 Symposium Venue Map ..................................................................9 Information for the Presenters .................................................11 Student Presentation Contest Rules .......................................12 Presentation Schedule .................................................................13 Poster Presentation Schedule ...................................................20 Keynote Speaker Abstracts & Biographies ............................25 Organizers and Sponsors.............................................................32 -
A Possible 150 Million Years Old Cirripede Crustacean Nauplius and the Phenomenon of Giant Larvae
Contributions to Zoology, 86 (3) 213-227 (2017) A possible 150 million years old cirripede crustacean nauplius and the phenomenon of giant larvae Christina Nagler1, 4, Jens T. Høeg2, Carolin Haug1, 3, Joachim T. Haug1, 3 1 Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg- Martinsried, Germany 2 Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany 4 E-mail: [email protected] Key words: nauplius, metamorphosis, palaeo-evo-devo, Cirripedia, Solnhofen lithographic limestones Abstract The possible function of giant larvae ................................ 222 Interpretation of the present case ....................................... 223 The larval phase of metazoans can be interpreted as a discrete Acknowledgements ....................................................................... 223 post-embryonic period. Larvae have been usually considered to References ...................................................................................... 223 be small, yet some metazoans possess unusually large larvae, or giant larvae. Here, we report a possible case of such a giant larva from the Upper Jurassic Solnhofen Lithographic limestones (150 Introduction million years old, southern Germany), most likely representing an immature cirripede crustacean (barnacles and their relatives). The single specimen was documented with up-to-date -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Barnacle Paper.PUB
Proc. Isle Wight nat. Hist. archaeol. Soc . 24 : 42-56. BARNACLES (CRUSTACEA: CIRRIPEDIA) OF THE SOLENT & ISLE OF WIGHT Dr Roger J.H. Herbert & Erik Muxagata To coincide with the bicentenary of the birth of the naturalist Charles Darwin (1809-1889) a list of barnacles (Crustacea:Cirripedia) recorded from around the Solent and Isle of Wight coast is pre- sented, including notes on their distribution. Following the Beagle expedition, and prior to the publication of his seminal work Origin of Species in 1859, Darwin spent eight years studying bar- nacles. During this time he tested his developing ideas of natural selection and evolution through precise observation and systematic recording of anatomical variation. To this day, his monographs of living and fossil cirripedia (Darwin 1851a, 1851b, 1854a, 1854b) are still valuable reference works. Darwin visited the Isle of Wight on three occasions (P. Bingham, pers.com) however it is unlikely he carried out any field work on the shore. He does however describe fossil cirripedia from Eocene strata on the Isle of Wight (Darwin 1851b, 1854b) and presented specimens, that were supplied to him by other collectors, to the Natural History Museum (Appendix). Barnacles can be the most numerous of macrobenthic species on hard substrata. The acorn and stalked (pedunculate) barnacles have a familiar sessile adult stage that is preceded by a planktonic larval phase comprising of six naupliar stages, prior to the metamorphosis of a non-feeding cypris that eventually settles on suitable substrate (for reviews on barnacle biology see Rainbow 1984; Anderson, 1994). Additionally, the Rhizocephalans, an ectoparasitic group, are mainly recognis- able as barnacles by the external characteristics of their planktonic nauplii. -
In the Oregon State Arthropod Collection. Zygaenoidea
2019 Vol 3 (2) Catalog: Oregon State Arthropod Collection Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Zygaenoidea: Zygaenidae, Latreille 1809, Limacodidae, Moore 1879, Dalceridae Dyar, 1898 and Megalopygidae Herrich-Schäffer, 1855 Jon H. Shepard Paul C. Hammond Christopher J. Marshall Oregon State Arthropod Collection, Department of Integrative Biology, Oregon State University, Corvallis OR 97331 Cite this work, including the attached dataset, as: Shepard, J. H., P. C. Hammond, C. J. Marshall. 2019. Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Zygaenoidea: Zygaenidae, Latreille 1809, Limacodidae, Moore 1879, Dalceridae Dyar, 1898 and Megalopygidae Herrich-Schäffer, 1855. Catalog: Oregon State Arthropod Collection 3(2) (beta version). http://dx.doi.org/10.5399/osu/cat_osac.3.2.4593 Introduction These records were generated using funds from the LepNet project (Seltmann et. al., 2017) - a national effort to create digital records for North American Lepidoptera. The dataset published herein contains the label data for all North American specimens of Zygaenidae, Limacodidae, Dalceridae and Megalopygidae residing at the Oregon State Arthropod Collection as of March 2019. A beta version of these data records will be made available on the OSAC server (http://osac.oregonstate.edu/IPT) at the time of this publication. The beta version will be replaced in the near future with an official release (version 1.0), which will be archived as a supplemental file to this paper. Methods Basic digitization protocols and metadata standards can be found in (Shepard et al. 2018). Identifications were confirmed prior to determination by Jon Shepard and Paul Hammond using the online Digital Guide to Moth Identification website (Moth Photographers Group, 2019).