The Bouma Sequence and the Turbidite Mind Set

Total Page:16

File Type:pdf, Size:1020Kb

The Bouma Sequence and the Turbidite Mind Set EARTWSCIENCE ELSEVIER Earth-Science Reviews 42 (1997) 201-229 The Bouma Sequence and the turbidite mind set G. Shanmugam * Mobil Technology Company, P. 0. Box 650232, Dallas, 7X 75265-0232, USA Received 12 September 1996; accepted 28 April 1997 Abstract Conventionally, the Bouma Sequence [Bouma, A.H., 1962. Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.], composed of T,, T,, T,, Td, and T, divisions, is interpreted to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences can also be interpreted to be deposits formed by processes other than turbidity currents, such as sandy debris flows and bottom-current reworking. Many published examples of turbidites, most of them hydrocarbon-bearing sands, in the North Sea, the Norwegian Sea, offshore Nigeria, offshore Gabon, Gulf of Mexico, and the Ouachita Mountains, are being reinterpreted by the present author as dominantly deposits of sandy debris flows and bottom-current reworking with only a minor percentage of true turbidites (i.e., deposits of turbidity currents with fluidal or Newtonian rheology in which sediment is suspended by fluid turbulence). This reinterpretation is based on detailed description of 21,000 ft (6402 m) of conventional cores and 1200 ft (365 m> of outcrop sections. The predominance of interpreted turbidites in these areas by other workers can be attributed to the following: (1) loose applications of turbidity-current concepts without regard for fluid rheology, flow state, and sediment-support mechanism that result in a category of ‘turbidity currents’ that includes debris flows and bottom currents; (2) field description of deep-water sands using the Bouma Sequence (an interpretive model) that invariably leads to a model-driven turbidite interpretation; (3) the prevailing turbidite mind set that subcon- sciously forces one to routinely interpret most deep-water sands as some kind of turbidites; (4) the use of our inability to interpret transport mechanism from the depositional record as an excuse for assuming deep-water sands as deposits of turbidity currents; (5) the flawed concept of high-density turbidity currents that allows room for interpreting debris-flow deposits as turbidites; (6) the flawed comparison of subaerial river currents (fluid-gravity flows dominated by bed-load transport) with subaqueous turbidity currents (sediment-gravity flows dominated by suspended load transport) that results in misinterpreting ungraded or parallel-stratified deep-sea deposits as mrbidites; and (7) the attraction to use obsolete submarine-fan models with channels and lobes that require a turbidite interpretation. Although the turbidite paradigm is alive and well for now, the turhidites themselves are becoming an endangered facies! 0 1997 Elsevier Science B.V. Keywords: turbidity currents; Bouma Sequence; submarine fans; debris flows * Tel.: + I-214-951 3109; fax: + l-214-905 7058; e-mail: [email protected] 0012.8252/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved. PII SOOl2-8252(97)00010-X 1. Introduction sharp or gradational upper contact; and (3) whether the bed has mudstone clasts near the base or the top. The Bouma Sequence, which is interpreted to Even if one records all other information in addition represent the deposit of a turbidity current (Fig. 1). is to T;,. the notation, T, carries with it a powerful probably the single most widely used (or abused) message and a built-in interpretation that the bed was terminology for the field description of sands inter- deposited by a turbidity current. preted to be of deep-water origin; the interpretive On the other hand. if the same bed were to be term ‘deep-water sand’ will be used hereafter. The described without the T, notation, simply as concept of the Bouma Sequence is so deeply rooted ‘structureless, with a sharp upper contact, and con- in the psyche of geologists that the standard geologic taining floating mudstone clasts near the top,’ then practice of maintaining a distinction between de- the description stands alone without any attached scription and interpretation is often totally lost when interpretation to its origin. Thus the former descrip- it comes to describing deep-water sands. For exam- tion leaves one no choice but to interpret the bed as a ple, Miall (1995, p. 379) asks, ‘I . who would now turbidite. whereas the latter description allows for object to the use of Bouma’s (1962) five divisions alternate interpretations, such as sandy debris flows. (A-E) as a framework for the field description of The Bouma Sequence represents an interpretive turbidites?” I, for one, would. depositional model for the deposit of a turbidity In an observational science like geology. we must current (Fig. 1). Therefore, describing a deep-water always maintain a clear distinction between descrip- sand unit as T, is like describing a cross-bedded sand tion and interpretation. This is particularly critical for unit as a ‘braided stream deposit.’ Because the deep-water sands whose depositional origins are Bouma divisions are now so routinely applied during much more complex than the published literature field descriptions, it is almost impossible to know saturated with turbidite terminology would indicate. how many of the published examples of ‘turbidites’ For example, if a bed is described in the field as T, actually represent deposits of true turbidity currents. division (i.e., Bouma division A), it is difficult to This skepticism stems from the fact that the com- know from that description alone: (1) whether the plete and partial ‘Bouma Sequence’ can be explained bed is structureless (i.e., sands that to the naked eye by processes other than true turbidity currents. I will appear to be devoid of primary structures) and un- return to this point below (see Section 4). graded or normally graded; (2) whether the bed has a About a decade ago, 1 questioned the validity of - Bouma (1962) Middleton and Lowe (1962) This study Divisions Hampton (1973) I I I I Pelagic and Pelagic and emipelagic Fig. I. Ideal Bouma Sequence showing T,. T,. T,, Td, and T, divisions. Conventional interpretation is that the entire sequence is a product of a turbidity current (Bouma, 1962; Walker, 1965; Middleton and Hampton, 1973). Lowe (1982) considers that the T, division is a product of a high-density turbidity current and the T,. T,. and T,, divisions are deposits of low-density turbidity currents. In this study, the T,, division is considered to be a product of a turbidity current only if it is normally graded, otherwise it is a product of a sandy debris flow; the T,. T,, and Td divisions are considered to he deposits of bottom-current reworking. See text for details. G. Shanmugam/Earth-Science Reviews 42 (1997) 201-229 203 using the turbidite facies scheme of Mutti and Ricci (Vail et al., 1991). From the standpoint of petroleum Lucchi (1972) for interpreting submarine-fan envi- industry, the principal attraction to submarine-fan ronments (Shanmugam et al., 1985). Since then, I models with channels and lobes is that the fan model have had the rare opportunity to describe deep-water can be used to predict the distribution of turbidite sands totaling nearly 22,000 ft (6.7 km) of rocks, sand (i.e., the occurrence of sheet-like lobe sands most of them hydrocarbon bearing, from a number of downdip from channels). However, incorrect inter- areas known for deep-water ‘turbidite’ deposition. pretation of deep-water sands as turbidites can lead They include Tertiary basin-floor fans in the North to erroneous distribution of sand, and can have nega- Sea (Shanmugam, 1995; Shanmugam et al., 1995a, tive economic consequences. Although Walker 19961, the Cretaceous in the Norwegian Sea (1992) himself abandoned his popular fan model, (Shanmugam et al., 1994, 19961, the Pliocene in many petroleum geologists still cling to this defunct offshore Nigeria (Shanmugam et al., 1995b), the fan model (e.g., Coleman et al., 1994; McGee et al., Pliocene in offshore Equatorial Guinea (Famakinwa 1994). I attribute this phenomenon to a prevailing et al., 1997; Shanmugam et al., 1997b), the Creta- mind set on turbid&es that forces one, for no appar- ceous in offshore Gabon, the Pliocene-Pleistocene ent geologic reason, to the turbidite-dominated fan in the Gulf of Mexico (Shanmugam et al., 1993; model. Shanmugam and Zimbrick, 19961, and the Pennsyl- Although some of the problems that I raise here vanian Jackfork Group in the Ouachita Mountains of were raised 30 years ago by Sanders (19651, they Arkansas and Oklahoma (Shanmugam and Moiola, were ignored by the research workers of that time as 1994, 1995). Most of these examples were previ- a matter of convenience. Consequently, the turbidite ously interpreted as turbidites by other workers. problem has compounded itself into a monstrous However, I have reinterpreted them to be deposits of level today. Any further postponing of this issue is sandy debris flows, slumps, and bottom currents; only going to worsen the problem. Hopefully, this turbidites are extremely rare. These new interpreta- critical review will re-open the much needed debate tions have led me to critically evaluate the funda- on the fundamentals of turbidite deposition toward mentals of turbidity currents and their deposits, in- establishing what we know and what we do not cluding the Bouma Sequence. know. By design, this is an opinion-oriented review arti- cle because examples that I use here are exclusively from my previous publications in which I advocated 2. Turbidity currents and debris flows sandy debris flow (see Shanmugam, 1996a) and 2.1. Definitions of turbidity currents bottom-current reworking processes for deep-water sands rather than conventional turbidity-current pro- The core of the problem is the meaning of the cesses.
Recommended publications
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • A Few Months-Old Storm-Generated Turbidite Deposited in the Capbreton Canyon (Bay of Biscay, SW France)
    Geo-Marine Letters DOI 10.1007/s003670100077 A few months-old storm-generated turbidite deposited in the Capbreton Canyon (Bay of Biscay, SW France) T. Mulder( ) · O. Weber · P. Anschutz · F. J. Jorissen · J.-M. Jouanneau T. Mulder · O. Weber · P. Anschutz · F.J. Jorissen · J.-M. Jouanneau Département de Géologie et Océanographie, UMR 5805 EPOC, Université Bordeaux I, Avenue des Facultés, 33405 Talence cedex, France E-mail: [email protected] Received: 22 January 2001 / Revision accepted: 20 July 2001 / Published online: Abstract. A gravity core taken in the canyon of Capbreton shows a succession of sedimentary facies which can be interpreted as three superimposed Bouma sequences. The turbiditic sequences are covered by an oxidised layer which contains live benthic foraminiferal faunas indicating a reprisal of hemipelagic deposition. Activities of 234 Th and 210 Pb suggest that the most recent turbidite was deposited between early December 1999 and mid-January 2000. During this period, the most probable natural event able to trigger a turbidity current was the violent storm which affected the French Atlantic coast on 27 December 1999. The turbidity current could have been caused by a sediment failure due to an excess in pore pressure generated by the storm waves, an increase of the littoral drift, or the dissipation of the along-coast water bulge through the canyon. This sub-Recent turbidite shows that the canyon experiences modern gravity processes, despite the lack of a direct connection with a major sediment source. Introduction Although turbidity currents and turbidites have been known for half a century (Kuenen 1951, 1952a, 1952b, 1953, 1959; Bouma 1962), much controversy still exists concerning the processes of deposition (Kneller and Branney 1995; Shanmugam 1997, 2000; Mulder and Alexander 2001), their origin (Mulder and Cochonat 1996) and their recognition.
    [Show full text]
  • Turbidity Current Flow Over an Erodible Obstacle and Phases of Sediment Wave Generation Moshe Strauss1,2 and Michael E
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C06007, doi:10.1029/2011JC007539, 2012 Turbidity current flow over an erodible obstacle and phases of sediment wave generation Moshe Strauss1,2 and Michael E. Glinsky2,3,4 Received 24 August 2011; revised 21 March 2012; accepted 20 April 2012; published 7 June 2012. [1] We study the flow of particle-laden turbidity currents down a slope and over an obstacle. A high-resolution 2-D computer simulation model is used, based on the Navier-Stokes equations. It includes poly-disperse particle grain sizes in the current and substrate. Particular attention is paid to the erosion and deposition of the substrate particles, including application of an active layer model. Multiple flows are modeled from a lock release that can show the development of sediment waves (SW). These are stream-wise waves that are triggered by the increasing slope on the downstream side of the obstacle. The initial obstacle is completely erased by the resuspension after a few flows leading to self consistent and self generated SW that are weakly dependant on the initial obstacle. The growth of these waves is directly related to the turbidity current being self sustaining, that is, the net erosion is more than the net deposition. Four system parameters are found to influence the SW growth: (1) slope, (2) current lock height, (3) grain lock concentration, and (4) particle diameters. Three phases are discovered for the system: (1) “no SW,” (2) “SW buildup,” and (3) “SW growth”. The second phase consists of a soliton-like SW structure with a preserved shape.
    [Show full text]
  • Pennsylvanian Minturn Formation, Colorado, U.S.A
    Journal of Sedimentary Research, 2008, v. 78, 0–0 Research Articles DOI: 10.2110/jsr.2008.052 DEPOSITS FROM WAVE-INFLUENCED TURBIDITY CURRENTS: PENNSYLVANIAN MINTURN FORMATION, COLORADO, U.S.A. 1 2 2 3 2 M. P. LAMB, P. M. MYROW, C. LUKENS, K. HOUCK, AND J. STRAUSS 1Department of Earth & Planetary Science, University of California, Berkeley, California 94720, U.S.A. 2Department of Geology, Colorado College, Colorado Springs, Colorado 80903, U.S.A. 3Department of Geography and Environmental Sciences, University of Colorado, Denver, Colorado, 80217-3363 U.S.A. e-mail: [email protected] ABSTRACT: Turbidity currents generated nearshore have been suggested to be the source of some sandy marine event beds, but in most cases the evidence is circumstantial. Such flows must commonly travel through a field of oscillatory flow caused by wind-generated waves; little is known, however, about the interactions between waves and turbidity currents. We explore these interactions through detailed process-oriented sedimentological analysis of sandstone event beds from the Pennsylvanian Minturn Formation in north-central Colorado, U.S.A. The Minturn Formation exhibits a complex stratigraphic architecture of fan-delta deposits that developed in association with high topographic relief in a tectonically active setting. An , 20–35-m- thick, unconformity-bounded unit of prodelta deposits consists of dark green shale and turbidite-like sandstone beds with tool marks produced by abundant plant debris. Some of the sandstone event beds, most abundant at distal localities, contain reverse- to-normal grading and sequences of sedimentary structures that indicate deposition from waxing to waning flows. In contrast, proximal deposits, in some cases less than a kilometer away, contain abundant beds with evidence for deposition by wave- dominated combined flows, including large-scale hummocky cross-stratification (HCS).
    [Show full text]
  • Contourites and Associated Sediments Controlled by Deep-Water Circulation Processes: State-Of-The-Art and Future Considerations
    2nd Deep-Water Circulation Congress, 10-12 Sept. 2014, Ghent, Belgium Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations Michele Rebesco1, Francisco Javier Hernández-Molina2, David Van Rooij3 and Anna Wåhlin4 1 OGS, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42 /C, 34010, TS, Italy; ([email protected]) 2 Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; ([email protected]) 3 Department of Geology and Soil Science, Ghent University, B-9000 Gent, Belgium; ([email protected]) 4 Department of Earth Sciences, University of Gothenburg, PO Box 460, SE-405 30 Göteborg, Sweden; ([email protected]) Abstract: The contourite paradigm was conceived a few decades ago and about 120 major contourite areas are presently known associated to myriad oceanographic processes, which involve dense bottom currents, tides, eddies, deep-sea storms, internal waves and tsunamis. The increasing recognition of these deposits is influencing palaeoclimatology & palaeoceanography, slope-stability/geological hazard assessment, and hydrocarbon exploration. Nevertheless, there is a pressing need for a better understanding of the sedimentological and oceanographic processes governing contourites. Persistent oceanographic processes significantly affect the seafloor, resulting in a continuous spectrum of depositional and erosional features. Although much progress has been made in the large-scale, geophysically based recognition of these deposits, there remains a lack of unambiguous and commonly accepted diagnostic criteria for deciphering the small-scaled contourite facies and for distinguishing them from turbidite ones. Similarly, the study of sandy deposits generated or affected by bottom currents offers great research potential: these deposits might prove invaluable as future reservoir targets.
    [Show full text]
  • Sediment and Sedimentary Rocks
    Sediment and sedimentary rocks • Sediment • From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) • Types of sedimentary rocks (clastic, chemical and organic) • Sedimentary structures (bedding, cross-bedding, graded bedding, mud cracks, ripple marks) • Interpretation of sedimentary rocks Sediment • Sediment - loose, solid particles originating from: – Weathering and erosion of pre- existing rocks – Chemical precipitation from solution, including secretion by organisms in water Relationship to Earth’s Systems • Atmosphere – Most sediments produced by weathering in air – Sand and dust transported by wind • Hydrosphere – Water is a primary agent in sediment production, transportation, deposition, cementation, and formation of sedimentary rocks • Biosphere – Oil , the product of partial decay of organic materials , is found in sedimentary rocks Sediment • Classified by particle size – Boulder - >256 mm – Cobble - 64 to 256 mm – Pebble - 2 to 64 mm – Sand - 1/16 to 2 mm – Silt - 1/256 to 1/16 mm – Clay - <1/256 mm From Sediment to Sedimentary Rock • Transportation – Movement of sediment away from its source, typically by water, wind, or ice – Rounding of particles occurs due to abrasion during transport – Sorting occurs as sediment is separated according to grain size by transport agents, especially running water – Sediment size decreases with increased transport distance From Sediment to Sedimentary Rock • Deposition – Settling and coming to rest of transported material – Accumulation of chemical
    [Show full text]
  • Measuring Currents in Submarine Canyons: Technological and Scientifi C Progress in the Past 30 Years
    Exploring the Deep Sea and Beyond themed issue Measuring currents in submarine canyons: Technological and scientifi c progress in the past 30 years J.P. Xu U.S. Geological Survey, 345 Middlefi eld Road, MS-999, Menlo Park, California 94025, USA ABSTRACT 1. INTRODUCTION processes, and summarize and discuss several future research challenges constructed primar- The development and application of The publication of the American Association ily for submarine canyons in temperate climate, acoustic and optical technologies and of of Petroleum Geologists Studies in Geology 8: such as the California coast. accurate positioning systems in the past Currents in Submarine Canyons and Other Sea 30 years have opened new frontiers in the Valleys (Shepard et al., 1979) marked a signifi - 2. TECHNOLOGICAL ADVANCES submarine canyon research communities. cant milestone in submarine canyon research. IN CURRENT OBSERVATION IN This paper reviews several key advance- Although there had been studies on the topics of SUBMARINE CANYONS ments in both technology and science in the submarine canyon hydrodynamics and sediment fi eld of currents in submarine canyons since processes in various journals since the 1930s 2.1. Instrumentation the1979 publication of Currents in Subma- (Shepard et al., 1939; Emory and Hulsemann, rine Canyons and Other Sea Valleys by Fran- 1963; Ryan and Heezen 1965; Inman, 1970; Instrument development has come a long way cis Shepard and colleagues. Precise place- Drake and Gorsline, 1973; Shepard, 1975), this in the past 30 yr. The greatest leap in the tech- ments of high-resolution, high-frequency book was the fi rst of its kind to provide descrip- nology of fl ow measurements was the transition instruments have not only allowed research- tion and discussion on the various phenomena from mechanical to acoustic current meters.
    [Show full text]
  • Permian Basin, West Texas and Southeastern New Mexico
    Report of Investigations No. 201 Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico John B. Comer* *Current address Indiana Geological Survey Bloomington, Indiana 47405 1991 Bureau of Economic Geology • W. L. Fisher, Director The University of Texas at Austin • Austin, Texas 78713-7508 Contents Abstract ..............................................................................................................................1 Introduction ..................................................................................................................... 1 Methods .............................................................................................................................3 Stratigraphy .....................................................................................................................5 Nomenclature ...................................................................................................................5 Age and Correlation ........................................................................................................6 Previous Work .................................................................................................................6 Western Outcrop Belt ......................................................................................................6 Central Texas ...................................................................................................................7 Northeastern Oklahoma
    [Show full text]
  • Sedimentary Rocks
    OCN 201 Coastal Sediments Lab Sediment Particle Size Distribution and Turbidity Flows Although this laboratory will pertain to oceanic sediments, similar processes can also be observed on land and in other aquatic systems (i.e., lakes, wetlands). This reading should supplement your understanding of the processes that affect particle size distribution across a marine system (i.e., barrier reef). Next week’s laboratory exercises will focus on demonstrating some of these principles, and give you experience in quantifying particle size distributions across a barrier reef. Sediments Sediment, by definition, is any loose or fragmented material. Hence, loose sand, shells and their fragments, dead leaves, and mud can all be categorized as sediment. All sediments have a source from which they originate. Pelagic sediments are those found in the open ocean, and whose origin cannot be traced to a specific landmass. They include red clay, radiolarian ooze, diatom ooze, and calcareous (nanofossil or foraminefera) ooze (see images of selected biogenic tests – see page 8 of Laboratory#5). Terrigenous sediments are those whose origin is traceable to a specific land (terra) area. They include a series of variously colored muds, volcanic debris, coral muds, and turbidity flow deposits. Lithogenous sediments are derived from weathering of rock (lithos) material, but their source cannot be readily identified. Red clay in the abyssal ocean is lithogenous. Much of the sediment on the sea floor of the open ocean is lithogenous clay that was transported thousands of miles from its origin. Calcareous sediments are found over oceanic rises and platforms, whereas red clays are typically distributed in the deep ocean basins.
    [Show full text]
  • Odd-Eirik Heimsund
    Numerical simulation of turbidity currents: a new perspective for small- and large- scale sedimentological experiments Snorre Heimsund Thesis for Candidatus Scientiarum degree in Sedimentology/Petroleum Geology Department of Earth Science University of Bergen 2007 i ABSTRACT Turbidity currents are a variety of subaqueous sediment-gravity flows, in which the suspension of sediment by water turbulence produces a water-sediment mixture that is denser than the ambient water and hence flows due to gravity along a topographic gradient. This type of sediment gravity flow is the most important mechanism for the dispersal and deposition of sand on deep-sea floors, as well as on the underwater slopes of many deltas and lakes. The hydrodynamics of turbidity currents are difficult to study in the natural environments, whereas laboratory experiments are limited to small-scale flows, time-consuming and not necessarily easier when it comes to the measuring of flow properties and establishing of the relationships between the turbulent flow structure and the transport and deposition of sediment. Mathematical models of turbidity current, integrated by computational fluid dynamics (CFD) and realized as numerical simulations, can be used to obviate these difficulties, and also to upscale laboratory datasets and to integrate the data from nature and experiments. The concept CFD refers to the numerical solution, by computational methods, of the governing equations describing fluid flow: the set of Navier-Stokes equations and the multi-phase fluid dynamics. CFD is widely used in the engineering branches of fluid mechanics, but is a relatively new numerical approach in the field of sedimentological research. In the present study, a three-dimensional model has been constructed by using the CFD software Flow-3D™ to simulate the flow of turbidity currents, including their internal hydraulic characteristics as well as sediment erosion and deposition.
    [Show full text]
  • Seafloor Gravity Currents: Flow Dynamics in Overspilling And
    Seafloor gravity currents: flow dynamics in overspilling and sinuous channels Robert William Kelly The University of Leeds School of Computing EPSRC Centre for Doctoral Training in Fluid Dynamics Submitted in accordance with the requirements for the degree of Doctor of Philosophy. October 2018 This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The candidate confirms that the work submitted is his/her/their own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. A version of Chapter 5 has been accepted for publication in Journal of Geophysical Research: Oceans: “The structure and entrainment characteristics of partially-confined gravity currents”. Robert Kelly, Robert Dorrell, Alan Burns and William McCaffrey. Journal of Geophysical Research: Oceans. Under review. In this manuscript the work is the candidate’s own, with the other authors having acted in a supervisory role, providing feedback and suggestions. i “In every outthrust headland, in every curving beach, in every grain of sand there is the story of the earth.” – Rachel Carson ii Acknowledgements It feels a bit bizarre to finally be writing this, as it means my time as a PhD student must be drawing to a close. Firstly, I would like to thank my team of supervisors, Bill McCaffrey, Robert Dorrell and Alan Burns, who gave me their utmost support throughout this project.
    [Show full text]
  • Origin and Evolution Processes of Hybrid Event Beds in the Lower Cretaceous of the Lingshan Island, Eastern China
    Australian Journal of Earth Sciences An International Geoscience Journal of the Geological Society of Australia ISSN: 0812-0099 (Print) 1440-0952 (Online) Journal homepage: http://www.tandfonline.com/loi/taje20 Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China T. Yang, Y. Cao, H. Friis, K. Liu & Y. Wang To cite this article: T. Yang, Y. Cao, H. Friis, K. Liu & Y. Wang (2018) Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China, Australian Journal of Earth Sciences, 65:4, 517-534, DOI: 10.1080/08120099.2018.1433236 To link to this article: https://doi.org/10.1080/08120099.2018.1433236 Published online: 16 May 2018. Submit your article to this journal Article views: 9 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=taje20 AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2018 VOL. 65, NO. 4, 517–534 https://doi.org/10.1080/08120099.2018.1433236 Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China T. Yang a,b,c, Y. Cao a, H. Friisc, K. Liu a and Y. Wanga aSchool of Geosciences, China University of Petroleum, Qingdao, 266580, PR China; bShandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266580, Shandong, PR China; cDepartment of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark ABSTRACT ARTICLE HISTORY On the basis of detailed sedimentological investigation, three types of hybrid event beds (HEBs) Received 13 September 2017 together with debrites and turbidites were distinguished in the Lower Cretaceous sedimentary Accepted 15 January 2018 – sequence on the Lingshan Island in the Yellow Sea, China.
    [Show full text]