The Lymph Node at a Glance – How Spatial Organization Optimizes the Immune Response Spencer M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SAHLGRENSKA AKADEMIN Thymic Studies
Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Akademisk avhandling Som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet kommer att offentligen försvaras i föreläsningssalen våning 3, Guldhedsgatan 10A, Göteborg Tisdagen den 14e maj, klockan 13.00 av Christina Lundqvist Fakultetsopponent: Professor Ludger Klein Ludwig-Maximilians-Universität, Tyskland Avhandlingen baseras på följande delarbeten I. Gudmundsdottir J*, Lundqvist C*, Ijspeert H, van der Slik E, Óskarsdóttir S, Lindgren S, Lundberg V, Berglund M, Lingman-Framme J, Telemo E, van der Burg M, Ekwall O. T-cell receptor sequencing reveals decreased diversity 18 years after early thymectomy. J Allergy Clin Immunol. 2017 Dec;140(6):1743- 1746.e7. doi: 10.1016/j.jaci.2017.08.002. Epub 2017 Sep 1. * These authors contributed equally to this work. II. Lundqvist C*, Camponeschi A*, Visentini M, Telemo E, Ekwall O‡, Mårtensson IL‡. Switched CD21-/low B cells with an antigen-presenting phenotype in the infant thymus. J Allergy Clin Immunol. 2018 Nov 30. pii: S0091-6749(18)31721- 4. doi: 10.1016/j.jaci.2018.11.019. * These authors contributed equally to this work. ‡ These authors contributed equally to this work. III. Lundqvist C, Lindgren S, Cheuk S, Lundberg V, Berglund M, Thörn K, Telemo E, Ekwall O. Characterization of Hassall's corpuscles in the human thymus. Manuscript SAHLGRENSKA AKADEMIN INSTITUTIONEN FÖR MEDICIN Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Christina Lundqvist Avdelningen för reumatologi och inflammationsforskning, Institutionen för medicin, Sahlgrenska akademin, Göteborgs universitet Abstract This thesis focuses on the human thymus, a primary lymphoid organ responsible for the maturation of T cells. -
Visualizing B Cell Development: Creating an Immunology Video Game
VISUALIZING B CELL DEVELOPMENT: CREATING AN IMMUNOLOGY VIDEO GAME By Emily Lunhui Ling A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Arts Baltimore, Maryland March, 2016 © 2016 Emily L. Ling All Rights Reserved ABSTRACT e foundational immunology concepts of lymphocyte development are important for beginning science students to comprehend. Video games oer the potential for a novel approach to teaching this complex subject matter by more eectively engaging students in this material. However, currently available educational video games intended to teach immunology have distinct limitations such as a lack of explicit demonstrations of the stages of lymphocyte development and clonal selection. is project identies the content focus and gameplay mechanics of currently available immunology video games. Using this as a basis, a novel approach for developing an immunology video game was outlined with the primary goal of improving integration of educational content. A proof of concept was developed for the B lymphocyte development portion of the game content and a partial prototype was developed in Unity 5 3D. e important contribution of this thesis was the development of a new approach to designing a more eective educational video game specically for immunology. Outcomes of this research will serve to inform future biomedical communicators on how to develop content for active learning games in immunology and provide a guide for designing full length educational video games featuring novel gameplay mechanics such as those identied through this project. Emily L. Ling ii CHAIRPERSONS OF THE SUPERVISORY COMMITTEE esis Preceptor Mark J. Soloski, Ph.D., Professor of Medicine Departments of Medicine, Pathology, Molecular Biology and Genetics, and Molecular Microbiology and Immunology Director, Immunology Training Program e Johns Hopkins University School of Medicine Departmental Advisor David A. -
Review Article Mesenchymal Stromal Cells Affect Disease Outcomes Via Macrophage Polarization
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Publishing Corporation Stem Cells International Volume 2015, Article ID 989473, 11 pages http://dx.doi.org/10.1155/2015/989473 Review Article Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization Guoping Zheng,1 Menghua Ge,1 Guanguan Qiu,1 Qiang Shu,2 and Jianguo Xu1,3 1 Shaoxing Second Hospital, Shaoxing, Zhejiang 312000, China 2The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China 3The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China Correspondence should be addressed to Jianguo Xu; [email protected] Received 18 May 2015; Accepted 30 June 2015 Academic Editor: Armand Keating Copyright © 2015 Guoping Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor- stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. -
Corpora Amylacea Act As Containers That Remove Waste Products from the Brain
Corpora amylacea act as containers that remove waste products from the brain Marta Ribaa,b,c,1, Elisabet Augéa,b,c,1, Joan Campo-Sabariza,d, David Moral-Antera,d, Laura Molina-Porcele, Teresa Ximelise, Ruth Ferrera,d, Raquel Martín-Venegasa,d, Carme Pelegría,b,c,2, and Jordi Vilaplanaa,b,c,2 aSecció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain; bInstitut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; cCentros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; dInstitut de Recerca en Nutrició i Seguretat Alimentàries (INSA-UB), Universitat de Barcelona, 08291 Barcelona, Spain; and eNeurological Tissue Bank of the Biobanc- Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved November 5, 2019 (received for review August 8, 2019) Corpora amylacea (CA) in the human brain are granular bodies 6). Nonetheless, we observed that CA contain glycogen synthase formed by polyglucosan aggregates that amass waste products of (GS), an indispensable enzyme for polyglucosan formation, and different origins. They are generated by astrocytes, mainly during also ubiquitin and protein p62, both associated with processes of aging and neurodegenerative conditions, and are located predom- elimination of waste substances (5). The relationship between CA inantly in periventricular and subpial regions. This study shows that and waste substances is recurrent in the literature. Already in 1999, CA are released from these regions to the cerebrospinal fluid and after a detailed and complete review, Cavanagh indicated that “CA are present in the cervical lymph nodes, into which cerebrospinal functions seem to be directed towards trapping and sequestration fluid drains through the meningeal lymphatic system. -
In Sickness and in Health: the Immunological Roles of the Lymphatic System
International Journal of Molecular Sciences Review In Sickness and in Health: The Immunological Roles of the Lymphatic System Louise A. Johnson MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; [email protected] Abstract: The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are dis- tinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific func- tions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mech- anisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and Citation: Johnson, L.A. -
Adaptive Immune Systems
Immunology 101 (for the Non-Immunologist) Abhinav Deol, MD Assistant Professor of Oncology Wayne State University/ Karmanos Cancer Institute, Detroit MI Presentation originally prepared and presented by Stephen Shiao MD, PhD Department of Radiation Oncology Cedars-Sinai Medical Center Disclosures Bristol-Myers Squibb – Contracted Research What is the immune system? A network of proteins, cells, tissues and organs all coordinated for one purpose: to defend one organism from another It is an infinitely adaptable system to combat the complex and endless variety of pathogens it must address Outline Structure of the immune system Anatomy of an immune response Role of the immune system in disease: infection, cancer and autoimmunity Organs of the Immune System Major organs of the immune system 1. Bone marrow – production of immune cells 2. Thymus – education of immune cells 3. Lymph Nodes – where an immune response is produced 4. Spleen – dual role for immune responses (especially antibody production) and cell recycling Origins of the Immune System B-Cell B-Cell Self-Renewing Common Progenitor Natural Killer Lymphoid Cell Progenitor Thymic T-Cell Selection Hematopoetic T-Cell Stem Cell Progenitor Dendritic Cell Myeloid Progenitor Granulocyte/M Macrophage onocyte Progenitor The Immune Response: The Art of War “Know your enemy and know yourself and you can fight a hundred battles without disaster.” -Sun Tzu, The Art of War Immunity: Two Systems and Their Key Players Adaptive Immunity Innate Immunity Dendritic cells (DC) B cells Phagocytes (Macrophages, Neutrophils) Natural Killer (NK) Cells T cells Dendritic Cells: “Commanders-in-Chief” • Function: Serve as the gateway between the innate and adaptive immune systems. -
Type 3 Innate Lymphoid Cells a Stromal Cell Niche for Human and Mouse
A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells Kerim Hoorweg, Priyanka Narang, Zhi Li, Anne Thuery, Natalie Papazian, David R. Withers, Mark C. Coles and Tom This information is current as Cupedo of September 28, 2021. J Immunol 2015; 195:4257-4263; Prepublished online 16 September 2015; doi: 10.4049/jimmunol.1402584 http://www.jimmunol.org/content/195/9/4257 Downloaded from References This article cites 42 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/195/9/4257.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells Kerim Hoorweg,*,1 Priyanka Narang,†,1 Zhi Li,† Anne Thuery,† Natalie Papazian,* David R. -
Human Anatomy As Related to Tumor Formation Book Four
SEER Program Self Instructional Manual for Cancer Registrars Human Anatomy as Related to Tumor Formation Book Four Second Edition U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutesof Health SEER PROGRAM SELF-INSTRUCTIONAL MANUAL FOR CANCER REGISTRARS Book 4 - Human Anatomy as Related to Tumor Formation Second Edition Prepared by: SEER Program Cancer Statistics Branch National Cancer Institute Editor in Chief: Evelyn M. Shambaugh, M.A., CTR Cancer Statistics Branch National Cancer Institute Assisted by Self-Instructional Manual Committee: Dr. Robert F. Ryan, Emeritus Professor of Surgery Tulane University School of Medicine New Orleans, Louisiana Mildred A. Weiss Los Angeles, California Mary A. Kruse Bethesda, Maryland Jean Cicero, ART, CTR Health Data Systems Professional Services Riverdale, Maryland Pat Kenny Medical Illustrator for Division of Research Services National Institutes of Health CONTENTS BOOK 4: HUMAN ANATOMY AS RELATED TO TUMOR FORMATION Page Section A--Objectives and Content of Book 4 ............................... 1 Section B--Terms Used to Indicate Body Location and Position .................. 5 Section C--The Integumentary System ..................................... 19 Section D--The Lymphatic System ....................................... 51 Section E--The Cardiovascular System ..................................... 97 Section F--The Respiratory System ....................................... 129 Section G--The Digestive System ......................................... 163 Section -
Tumor Microenvironment Consortium
Tumor Microenvironment Network (TMEN) Dinah Singer, Ph.D. Director Suresh Mohla, Ph.D. TMEN Program Director Division of Cancer Biology TMEN 2006-2011: Goals – Generate a comprehensive understanding of the composition of the normal stroma and the role of the stroma in tumor initiation, progression and metastasis – Develop resources and infrastructure critical to the broader research community to advance understanding of the tumor microenvironment (TME) TMEN 2006-2011: Current Program •Nine interdisciplinary groups characterizing the TME in major cancer sites, emphasizing human samples •Identifying and translating promising leads •Collaboratively addressing the complexity of TME by assessing: • The co-evolution of tumor-associated stromal cell types and the tumor •Stromal cell interactions with each other and with tumor cells •Generating novel reagents, models and technologies for the research community TMEN 2006-2011: Areas of Emphasis Microenvironment Initiation Progression Metastasis – Tumor initiating cells – Tumor heterogeneity – Stromal cell types and cellular processes – Complex signaling pathways – Genes and genetics TMEN 2006-2011: Scientific Accomplishments Tumor Initiating Cells: • Combined invasive gene signatures in tumor initiating cells and stromal wound repair response genes robustly predict metastasis-free and overall survival in breast, medulloblastoma, lung and prostate cancer patients • New therapeutic approaches to circumvent the chemo- and radio-resistance of tumor initiating cells Stromal Cells: • Delineation of mechanisms -
Endothelial Venules in a Mucosal Site in Naive Lymphocyte Adhesion to High Primary Role of Peripheral Node Addressin Phenotypic
Nasal-Associated Lymphoid Tissue: Phenotypic and Functional Evidence for the Primary Role of Peripheral Node Addressin in Naive Lymphocyte Adhesion to High This information is current as Endothelial Venules in a Mucosal Site of October 1, 2021. Keri L. Csencsits, Mark A. Jutila and David W. Pascual J Immunol 1999; 163:1382-1389; ; http://www.jimmunol.org/content/163/3/1382 Downloaded from References This article cites 50 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/163/3/1382.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Nasal-Associated Lymphoid Tissue: Phenotypic and Functional Evidence for the Primary Role of Peripheral Node Addressin in Naive Lymphocyte Adhesion to High Endothelial Venules in a Mucosal Site1 Keri L. Csencsits, Mark A. Jutila, and David W. -
B Cells + Interaction
Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5 + B Cells This information is current as of October 2, 2021. Isaac R. Blanca, Earl W. Bere, Howard A. Young and John R. Ortaldo J Immunol 2001; 167:6132-6139; ; doi: 10.4049/jimmunol.167.11.6132 http://www.jimmunol.org/content/167/11/6132 Downloaded from References This article cites 45 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/167/11/6132.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5؉ B Cells Isaac R. Blanca,*† Earl W. Bere,* Howard A. -
The Size of Lymph Nodes in the Neck on Sonograms As a Radiologic Criterion for Metastasis: How Reliable Is It?
AJNR Am J Neuroradiol 19:695–700, April 1998 The Size of Lymph Nodes in the Neck on Sonograms as a Radiologic Criterion for Metastasis: How Reliable Is It? Michiel W. M. van den Brekel, Jonas A. Castelijns, and Gordon B. Snow PURPOSE: A definition of cut-off points for nodal size is essential to determine whether cervical lymph nodes are metastatic or not. Because the currently used size criteria are defined for random populations of patients with head and neck cancer, we set out to study whether these criteria are optimal for patients without palpable metastases in different levels of the neck. We defined optimal size criteria for sonography by calculating the sensitivity and specificity of different size cut-off points. METHODS: We compared the sensitivity and specificity of different size cut-off points as measured on sonograms for various levels in the neck in a series of 117 patients with and 131 patients without palpable neck metastases. RESULTS: A minimum axial diameter of 7 mm for level II and 6 mm for the rest of the neck revealed the optimal compromise between sensitivity and specificity in necks without palpable metastases. For all necks together (with and without palpable metastases), the criteria were 1 to 2 mm larger. CONCLUSION: Our findings indicate that the current sonographic size criteria used for random patient populations are not optimal for necks without palpable metastases, nor can the same cut-off points be used for all levels in the neck. The management of lymph node metastases in the cious lymph nodes may convert both selective neck neck in patients with squamous cell carcinoma of the treatment and a wait-and-see policy to more secure upper air and food passages is a continuing source of comprehensive treatment of all levels of the neck (6).