The Prevalence of Seven Crucial Honeybee Viruses Using Multiplex RT-PCR and Their Phylogenetic Analysis

Total Page:16

File Type:pdf, Size:1020Kb

The Prevalence of Seven Crucial Honeybee Viruses Using Multiplex RT-PCR and Their Phylogenetic Analysis Turkish Journal of Veterinary and Animal Sciences Turk J Vet Anim Sci (2021) 45: 44-55 http://journals.tubitak.gov.tr/veterinary/ © TÜBİTAK Research Article doi:10.3906/vet-2004-139 The prevalence of seven crucial honeybee viruses using multiplex RT-PCR and their phylogenetic analysis 1, 2 Abdurrahman Anıl ÇAĞIRGAN *, Zafer YAZICI 1 Department of Virology, İzmir/Bornova Veterinary Control Institute, İzmir, Turkey 2 Department of Virology, School of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey Received: 26.04.2020 Accepted/Published Online: 26.12.2020 Final Version: 23.02.2021 Abstract: Honey bee viruses may be of severe adverse effect on bee colonies. Till now, more than twenty honey bee viruses have been identified. The aim of this study was to investigate the prevalence of seven honey bee viruses, namely Israeli acute paralysis virus (IAPV), deformed wing virus (DWV), sacbrood virus (SBV), acute bee paralysis virus (ABPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), and chronic bee paralysis virus (CBPV) using a multiplex reverse transcription polymerase chain reaction (mRT-PCR). A total of 111 apiaries were randomly selected and adult bees and larvae samples were obtained from seemingly healthy colonies located at Aegean region of west Turkey. The presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), acute bee paralysis virus (ABPV), and sacbrood virus (SBV) was detected, while Israeli acute paralysis virus (IAPV) or Kashmir bee virus (KBV) couldn’t be detected in studied colonies. The results showed the virus with the highest prevalence was DWV followed by BQCV, ABPV, SBV, and CBPV. PCR products for DWV, BQCV, ABPV, SBV, CBPV were sequenced and compared to the Genbank database. The Turkish strains demonstrated heterogeneous populations of DWV, BQCV, and relatively homogenous populations of ABPV, CBPV, and SBV. Based on these results, SBV and CBPV had formed different branch and genotypes when compared to previous studies. In conclusion, this study provides information about the distinctive honey bee viruses for future researches in Turkey, which holds the largest number of managed colonies in Europe. Key words: Apis mellifera, deformed wing virus, black quenn cell virus, sacbrood virus, chronic bee paralysis virus, acute bee paralysis virus 1. Introduction virus (IAPV), deformed wing virus (DWV), sacbrood Turkey has tremendous beekeeping potential with 7.4 virus (SBV), acute bee paralysis virus (ABPV), black queen million colonies ranking just after China and India. cell virus (BQCV), Kashmir bee virus (KBV), and chronic Twenty-five percent of these colonies are located in the bee paralysis virus (CBPV) are thought to be primarily Aegean region, which has an important place in the world responsible for the majority of severe disease in apiaries of beekeeping [1]. around the globe [8,9]. IAPV, KBV, and ABPV belong Until now, approximately twenty-four different viruses to the genus Aparavirus, BQCV belongs to the genus affecting Apis genus have been identified [2]; this number Cripavirus, and both genera belong to the Dicistroviridae changes continuously with the identification of new family. SBV and DWV belong to the genus Iflavirus of the viruses such as Apis Rhabdovirus-1, Apis Rhabdovirus-2 Iflaviridae family, while CBPV is not classified yet [10,11]. [3], and Varroa orthomyxovirus-1 [4]. It is known that a Characteristic symptoms of DWV include shrunken large part of honey bee viruses is of single-stranded RNA, wings that make flight impossible, decreased body size, and while filamentous virus (AmFV) and Apis iridescent virus discoloration in adult bees [12–14]. SBV can infect either (AIV) have DNA genome. Apart from cronic bee paralysis larvae or adult bee, but it causes larval death [14]. ABPV virus that has an isometric shape, most of the other viruses leads to typical symptoms in brood with discoloured larvae have indistinguishable using particle morphology [5-7]. and paralysed adult bees [15]. BQCV causes mortality In general bee viruses belong to one of these two in queen larvae and pupae [16]. IAPV leads to rapidly families known as Iflaviridae and Dicistroviridae. They are progressing paralysis, trembling, inability to fly, darkening nonenveloped, single-stranded, and positive-sense RNA and loss of hair from the thorax and abdomen [7,17]. In viruses [6]. Seven viruses namely Israeli acute paralysis experimental infections, KBV is extremely lethal to adults * Correspondence: [email protected] 44 This work is licensed under a Creative Commons Attribution 4.0 International License. ÇAĞIRGAN and YAZICI / Turk J Vet Anim Sci and larvae without clearly defined disease symptoms The cycling conditions consisted of one cycle at 50 °C [16]. Characteristic symptoms of CBPV are paralysis and for 30 min for reverse transcription followed by initial trembling, hairless and shiny, sometimes black individuals denaturation at 95 °C for 7 min, followed by denaturation crawling at the hive entrance [5,18]. Although many bee at 95 °C 20 s, annealing at 58 °C for 20 s, extension at 72 viruses can cause fatal disease at the individual or colony °C for 1 min, for 45 cycles, with a final extension at 72 level, they usually persist and spread harmlessly at low °C for 10 min (Techne TC-412, United Kingdom). The titres within and between bee populations. Difficult results were analyzed using 2.5% agarose gel and staining identification, unknown disease progress, the diagnosis, with ethidium bromide in TAE buffer at 80 V for 80 min and management of disease progress of viral diseases cause (Thermo, USA), the photographs was taken by Vilber difficulties comparing to other bee pathogens [7]. Lourmat, France. Many bee viruses are common throughout the world. The PCR products were sequenced in Forward Also, bee viruses have been the subject of different studies and Reverse by Microsynt (Balgach, Switzerland). conducted in Turkey [19–23]. Turkey is located in both Nucleotide sequence results were assembled and edited Europe and Asia, and it is situated at the crossroads of using DNADynamo DNA sequence analysis software. the Balkans, the Middle East, and the Mediterranean. The consensus nucleotide sequences that were obtained Therefore, it is an important country in terms of the were verified using the basic local alignment search bilateral transmission of viruses in the area. Hence, in this tool (BLAST) at the National Central for Biotechnology study, we investigated seven honey bee viruses in local Information (NCBI) [26]. colonies in Turkey. In addition, a phylogenetic analysis was 2.3. Phylogenetic analysis performed to provide information about the geographic In order to determine phylogenetic relationships among distribution of different virus strains. strains of DWV, SBV, ABPV, BQCV, and CBPV viruses in Turkey, the following sequences were first identified: 2. Materials and methods 484 nt sequences encoding a helicase gene of DWV, 317 nt sequences encoding a polyprotein protein of SBV, 719 2.1. Collection of bee samples and isolation of total RNA nt sequences encoding a capsid protein of ABPV, 383 nt The samples were randomly collected at a 95% confidence sequences encoding a capsid protein of BQCV and 1293 interval and 3% expected prevalence from apiaries in nt sequences encoding a putative RNA-dependent RNA seven Aegean provinces (Aydın, Denizli, İzmir, Kütahya, polymerase (RdRP) of CBPV. The sequencing primers Manisa, Muğla, Uşak) using the multistep sampling are provided in Table. The other sequences, which had method [24] (Figure 1). A total of 111 apiaries, including been reported before, were obtained from GenBank. The 30 adult bees and 30 larvae from each apiary, were selected multiple sequence alignments of the data were performed in this method. A pool consisting of 30 adult bees and 30 using the ClustalW algorithm using MEGA 6 software. larvae from each apiary was created and homogenized Then, the best DNA/Protein models were identified to use with 9 mL Eagle Minimum Essential Medium (EMEM) for phylogeny. Phylogenetic trees were constructed using (Sigma–Aldrich Corp., Dorset, United Kingdom) and MEGA 6 software [32] with the maximum likelihood (ML) then centrifuged at 3500 rpm and 4 °C for 30 min. The and neighbor-joining (NJ) methods with the Tamura-3 supernatant was stored at –80°C until analyzed. parameter. The best substitution models were selected Samples were collected between March 2017 and for each tree, a bootstrap value of 1000 replicates for all August 2017. There were no overt clinical symptoms in methods. any of the collected bee samples. The presence of bacterial, Amino acid distances were calculated using the parasitic, and fungal diseases was not checked. Jones–Taylor–Thornton method with gamma distribution For RNA extraction, 200 µL of supernatant was used. (JTT+G), and a bootstrap value of 1000 replicates [32,33]. Total RNA extraction was carried out using High Pure Similarity and identity of amino acid and nucleotide were Viral RNA Kit (Roche, Germany) in accordance with the determined using an online programme (imed.med.ucm. manufacturer’s instructions. es/Tools/sias.html). 2.2. mRT-PCR amplification and nucleotide sequencing The multiplex PCR method developed by Cagirgan and 3. Results Yazici [25] was used in this study. The final optimum 3.1. Virus detection reaction mixture consisted of 18.5 µL water, 10 µL reaction For adult bees from 111 apiaries sampled, 22 were positive buffer (Roche), 7 µL forward primer (0.4 µM each primers), for DWV. In this study, DWV was the most frequently 7 µL reverse primer (0.4 µM each primers), 1.5 µL MgCl2 detected viral agent in the apiaries, occurring in 19.8% of (2 mM), 5 U/µL Taq polymerase (Roche) and 5 µL RNA those tested. BQCV was detected in 20 apiaries, and it was (samples), in a total volume of 50 µL. the second most prevalent viral agent with a prevalence 45 ÇAĞIRGAN and YAZICI / Turk J Vet Anim Sci Figure 1.
Recommended publications
  • Development of Molecular Tools for Honeybee Virus Research: the South African Contribution
    African Journal of Biotechnology Vol. 2 (12), pp. 698-713, December 2003 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2003 Academic Journals Minireview Development of molecular tools for honeybee virus research: the South African contribution Sean Davison*, Neil Leat and Mongi Benjeddou Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa. Accepted 18 November 2003 Increasing knowledge of the association of honeybee viruses with other honeybee parasites, primarily the ectoparasitic mite Varroa destructor, and their implication in the mass mortality of honeybee colonies has resulted in increasing awareness and interest in honeybee viruses. In addition the identification, monitoring and prevention of spread of bee viruses is of considerable importance, particularly when considering the lack of information on the natural incidence of virus infections in honeybee populations worldwide. A total of eighteen honeybee viruses have been identified and physically characterized. Most of them have physical features resembling picornaviruses, and are referred to as picorna-like viruses. The complete genome sequences of four picorna-like honeybee viruses, namely Acute Bee Paralysis Virus (ABPV), Black Queen Cell Virus (BQCV), Sacbrood Virus (SBV) and Deformed Wing Virus (DWV) have been determined. The availability of this sequence data has lead to great advances in the studies on honeybee viruses. In particular, the development of a reverse genetics system for BQCV, will open new opportunities for studies directed at understanding the molecular biology, persistence, pathogenesis, and interaction of these bee viruses with other parasites. This review focuses on the contribution of the Honeybee Virus Research Group (HBVRG), from the University of the Western Cape of South Africa, in the development of molecular tools for the study of molecular biology and pathology of these viruses.
    [Show full text]
  • Virology Journal Biomed Central
    Virology Journal BioMed Central Research Open Access The use of RNA-dependent RNA polymerase for the taxonomic assignment of Picorna-like viruses (order Picornavirales) infecting Apis mellifera L. populations Andrea C Baker* and Declan C Schroeder Address: Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK Email: Andrea C Baker* - [email protected]; Declan C Schroeder - [email protected] * Corresponding author Published: 22 January 2008 Received: 19 November 2007 Accepted: 22 January 2008 Virology Journal 2008, 5:10 doi:10.1186/1743-422X-5-10 This article is available from: http://www.virologyj.com/content/5/1/10 © 2008 Baker and Schroeder; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Single-stranded RNA viruses, infectious to the European honeybee, Apis mellifera L. are known to reside at low levels in colonies, with typically no apparent signs of infection observed in the honeybees. Reverse transcription-PCR (RT-PCR) of regions of the RNA-dependent RNA polymerase (RdRp) is often used to diagnose their presence in apiaries and also to classify the type of virus detected. Results: Analysis of RdRp conserved domains was undertaken on members of the newly defined order, the Picornavirales; focusing in particular on the amino acid residues and motifs known to be conserved. Consensus sequences were compiled using partial and complete honeybee virus sequences published to date.
    [Show full text]
  • A Molecular Epidemiological Study of Black Queen Cell Virus in Honeybees
    A molecular epidemiological study of black queen cell virus in honeybees (Apis mellifera) of Turkey: the first genetic characterization and phylogenetic analysis of field viruses Dilek Muz, Mustafa Necati Muz To cite this version: Dilek Muz, Mustafa Necati Muz. A molecular epidemiological study of black queen cell virus in honeybees (Apis mellifera) of Turkey: the first genetic characterization and phylogenetic analysis of field viruses. Apidologie, 2018, 49 (1), pp.89-100. 10.1007/s13592-017-0531-5. hal-02973417 HAL Id: hal-02973417 https://hal.archives-ouvertes.fr/hal-02973417 Submitted on 21 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2018) 49:89–100 Original article * INRA, DIB and Springer-Verlag France SAS, 2017 DOI: 10.1007/s13592-017-0531-5 A molecular epidemiological study of black queen cell virus in honeybees (Apis mellifera ) of Turkey: the first genetic characterization and phylogenetic analysis of field viruses 1 2 Dilek MUZ , Mustafa Necati MUZ 1Department of Virology, Faculty of Veterinary Medicine, University of Namik Kemal, Tekirdag, Turkey 2Department of Parasitology, Faculty of Veterinary Medicine, University of Namik Kemal, Tekirdag, Turkey Received 4 February 2017 – Revised28June2017– Accepted 19 July 2017 Abstract – Black queen cell virus (BQCV) is one of the most common honeybee pathogens causing queen brood deaths.
    [Show full text]
  • Parasites of the Honeybee
    Parasites of the Honeybee This publication was produced by Dr. Mary F. Coffey Teagasc, Crops Research Centre, Oak Park, Carlow co-financed by The Department of Agriculture, Fisheries and Food November 2007 Table of Contents Introduction……………………………………………………………………….………….…….1 Bee origin and classification………………..……………………………………………………..2 The honeybee colony……….…………………………………..……………………......................4 Irish floral sources of pollen and nectar……………………………………...…………….…….11 Pests and diseases of the honeybee………………………………………………………….……12 Pests……………………………………….………………………………………...…………....12 Varroa Mite……………………………………………………………………………....12 Tracheal Mite…………………………………………………………………………….25 Bee-Louse (Braula Coeca)………………………………………………...………..........28 Wax Moths (Achroia Grisella & Galleria Mellonella) ………………………………….29 Tropilaelaps Mite…………………………………………………...……………………31 Small Hive Beetle (SHB)……………………………………………………...…….……33 Rodents (Mice and Rats)…………………………………………………………………36 Wasps and Bumblebees…………………………………………………………………..37 Adult bee diseases……………………….………………………………………….................….38 Nosema…………………………………………………………………………………...38 Brood diseases.………………………………………...……………………….…………..….…40 American Foulbrood………………………………………………………..……………40 European Foulbrood………………………...…………………………………………...43 Chalkbrood ……………………………..…………………….………………………….45 Stonebrood ……………………………………………………………………………….47 Viral diseases…………………………………….…………………………….……...………….47 Sacbrood Virus (SBV)……...…………………………………………………………….47 Deformed Wing Virus (DWV)……………..…………………………………………………….49 Kashmir Virus (KBV)……………………………………………………………………………..50
    [Show full text]
  • Black Queen Cell Virus in the Bumble Bee, Bombus Huntii Wenjun Peng, Jilian Li, Humberto Boncristiani, James Strange, Michele Hamilton, Yanping Chen
    Host range expansion of honey bee Black Queen Cell Virus in the bumble bee, Bombus huntii Wenjun Peng, Jilian Li, Humberto Boncristiani, James Strange, Michele Hamilton, Yanping Chen To cite this version: Wenjun Peng, Jilian Li, Humberto Boncristiani, James Strange, Michele Hamilton, et al.. Host range expansion of honey bee Black Queen Cell Virus in the bumble bee, Bombus huntii. Apidologie, Springer Verlag, 2011, 42 (5), pp.650-658. 10.1007/s13592-011-0061-5. hal-01003597 HAL Id: hal-01003597 https://hal.archives-ouvertes.fr/hal-01003597 Submitted on 1 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2011) 42:650–658 Original article * INRA, DIB-AGIB and Springer Science+Business Media B.V., 2011 DOI: 10.1007/s13592-011-0061-5 Host range expansion of honey bee Black Queen Cell Virus in the bumble bee, Bombus huntii 1 1 2 3 Wenjun PENG , Jilian LI , Humberto BONCRISTIANI , James P. STRANGE , 2 2 Michele HAMILTON , Yanping CHEN 1Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural
    [Show full text]
  • Pdf 889.14 K
    Journal of J Appl Biotechnol Rep. 2019 Mar;6(1):15-19 Applied Biotechnology doi 10.29252/JABR.06.01.03 Reports Original Article Highlights on the Genetic Relationships Between Some Honey Bee Viruses Using Various Techniques Hossam Abou-Shaara1* 1Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, Egypt Corresponding Author: Hossam Abou-Shaara, PhD, Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt. E-mail: [email protected] Received October 8, 2018; Accepted February 1, 2019; Online Published March 15, 2019 Abstract Introduction: Honey bees are used intensively to boost the agricultural and economic sectors worldwide. Many viruses attack honey bees and cause severe problems to the bee colonies, and constitute a real challenge for beekeeping development. Hence, understanding the genetic characteristics of bee viruses is necessary to highlight the phylogenetic relationships between them, and to find out similarity aspects based on sequences. Materials and Methods: Some public resources and free genetic analysis programs were utilized to perform this study. The complete sequences for some viruses were downloaded and analyzed using various programs and methods. Results: Some viruses shared the same base composition pattern in regards to percentage of A, T, C, and G. The phylogenetic relationships among the investigated viruses were presented and discussed. The phylogenetic trees constructed using three bioinformatics programs based on different methods emphasized the relationship between Kashmir bee virus (KBV) and Israeli acute paralysis virus (IAPV), and between deformed wing virus (DWV) and Kakugo virus (KV). These genetic relationships were also confirmed using enzymatic digestion to the sequences, gene cluster families, and open reading frames (ORFs).
    [Show full text]
  • Black Queen Cell Virus
    Fact sheet Black queen cell virus What is Black queen cell virus? Black queen cell virus (BQCV) is caused by the Black queen cell virus (Cripavirus). BQCV causes mortality in queen bee pupae, with dead queen bee larvae turning yellow and then brown black. The disease is most common in spring and early ESTABLISHED PEST ESTABLISHED summer. It is believed that infection with BQCV may be transmitted by Nosema apis, a microsporidian parasite of the honey bee that invades the gut of adult honey bees. Food and Environment Research Agency (Fera), Crown Copyright What should beekeepers look for? Worker bees on a queen bee cell Infection with BQCV causes queen bee pupae to turn yellow and the skin of the pupae to become sac-like. At latter stages of infection, the dead queen bee may change to brown-black. The walls of the queen bee cell also become a darker, brown-black colour. BQCV is often associated with Nosema apis infection. If Nosema disease is present within a queen bee breeding operation, it is always useful to look for signs of BQCV on a regular basis. What can it be confused with? Food and Environment Research Agency (Fera), Crown Food and Environment Research Agency (Fera), Crown Copyright BQCV can potentially be confused with Sacbrood Sacbrood disease affected larvae; BQCV causes the queen bee virus as the pupae show the same symptoms of pupae to display similar symptoms yellow colouration, the skin becoming plastic-like and the dead pupa becoming a fluid filled sac. However, as its name suggests, BQCV usually affects queen bee pupae, while Sacbrood virus mainly affects developing worker bee larvae.
    [Show full text]
  • Visualizing Sacbrood Virus of Honey Bees Via Transformation and Coupling with Enhanced Green Fluorescent Protein
    viruses Article Visualizing Sacbrood Virus of Honey Bees via Transformation and Coupling with Enhanced Green Fluorescent Protein 1, 1,2,3, 1 1 1 Lang Jin y, Shahid Mehmood y, Giikailang Zhang , Yuwei Song , Songkun Su , Shaokang Huang 1, Heliang Huang 1, Yakun Zhang 1, Haiyang Geng 1 and Wei-Fone Huang 1,* 1 College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (L.J.); [email protected] (S.M.); [email protected] (G.Z.); [email protected] (Y.S.); [email protected] (S.S.); [email protected] (S.H.); [email protected] (H.H.); [email protected] (Y.Z.); [email protected] (H.G.) 2 CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanic Garden, Chinese Academy of Sciences, Kunming 650000, China 3 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-159-8570-0981 These authors contributed equally to this work. y Received: 14 January 2020; Accepted: 9 February 2020; Published: 18 February 2020 Abstract: Sacbrood virus (SBV) of honey bees is a picornavirus in the genus Iflavirus. Given its relatively small and simple genome structure, single positive-strand RNA with only one ORF, cloning the full genomic sequence is not difficult. However, adding nonsynonymous mutations to the bee iflavirus clone is difficult because of the lack of information about the viral protein processes. Furthermore, the addition of a reporter gene to the clones has never been accomplished. In preliminary trials, we found that the site between 30 untranslated region (UTR) and poly(A) can retain added sequences.
    [Show full text]
  • Mode of Transmission Determines the Virulence of Black Queen Cell Virus in Adult Honey Bees, Posing a Future Threat to Bees and Apiculture
    viruses Communication Mode of Transmission Determines the Virulence of Black Queen Cell Virus in Adult Honey Bees, Posing a Future Threat to Bees and Apiculture Yahya Al Naggar 1,2,* and Robert J. Paxton 1 1 General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; [email protected] 2 Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt * Correspondence: [email protected]; Tel.: +49-345-5526511 Received: 30 March 2020; Accepted: 12 May 2020; Published: 14 May 2020 Abstract: Honey bees (Apis mellifera) can be infected by many viruses, some of which pose a major threat to their health and well-being. A critical step in the dynamics of a viral infection is its mode of transmission. Here, we compared for the first time the effect of mode of horizontal transmission of Black queen cell virus (BQCV), a ubiquitous and highly prevalent virus of A. mellifera, on viral virulence in individual adult honey bees. Hosts were exposed to BQCV either by feeding (representing direct transmission) or by injection into hemolymph (analogous to indirect or vector-mediated transmission) through a controlled laboratory experimental design. Mortality, viral titer and expression of three key innate immune-related genes were then quantified. Injecting BQCV directly into hemolymph in the hemocoel resulted in far higher mortality as well as increased viral titer and significant change in the expression of key components of the RNAi pathway compared to feeding honey bees BQCV. Our results support the hypothesis that mode of horizontal transmission determines BQCV virulence in honey bees.
    [Show full text]
  • The Influence of RNA Integrity on the Detection of Honeybee
    U __ © IBRA 2007 Journal ofApiCa1ri Research 46(2): 81-87 (2007) I BRA ORIGINAL RESEARCH ARTICLE The influence of RNA integrity on the detection of honey bee viruses: molecular assessment of different sample storage methods Yanping Chen, Jay Evans, Michele Hamilton and Mark Feidlaufer USDA-ARS, Bee Research Laboratory Bldg. 476 BARC-East Beltsville, MD 20705, USA, Received 3 January 2007, accepted subject to revision 21 March 2007, accepted for publication 6 April 2007. Corresponding author. Email: chenj©ba.ars.usda.gOV Summary RNA quality has been considered to be one of the most critical components for the overall success of RNA-based assays. To ensure accuracy of virus diagnosis by the RT-PCR method, it is important to identify an optimal sample storage method that stabilizes RNA and protects RNA from the activities of RNase in intact samples. We conducted studies to evaluate the effects of seven different storage conditions on the integrity of RNA and the influence of RNA integrity on the detection of virus infections in honey bees. RNA was isolated from samples processed under one of six storage conditions: I) bees stored at 4°C; 2) bees stored at -20°C; 3) crushed bee immersed in RNAlater at 4°C; 6) intact bees bees stored at -80°C; 4) sliced bees immersed in RNAlater at 4°C; 5) immersed in RNAIater at 4°C, or 7) bees immersed in 70% ethanol at room temperature. The results indicated that bee samples stored at -80°C, -20°C, cut in slices and then immersed in RNAlater at 4°C, and crushed into a paste and then immersed in RNAlater at 4°C provided successful RNA stabilization, suggesting any one of these four storage methods is the method of choice for storing bee samples intended for virus analysis.
    [Show full text]
  • Single-Stranded RNA Viruses Infecting the Invasive Argentine Ant, Linepithema Humile Received: 9 February 2017 Monica A
    www.nature.com/scientificreports OPEN Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile Received: 9 February 2017 Monica A. M. Gruber 1,2, Meghan Cooling1,2, James W. Baty1,3, Kevin Buckley4, Anna Accepted: 28 April 2017 Friedlander4, Oliver Quinn1, Jessica F. E. J. Russell1, Alexandra Sébastien1 & Philip J. Lester1,2 Published: xx xx xxxx Social insects host a diversity of viruses. We examined New Zealand populations of the globally widely distributed invasive Argentine ant (Linepithema humile) for RNA viruses. We used metatranscriptomic analysis, which identified six potential novel viruses in theDicistroviridae family. Of these, three contigs were confirmed by Sanger sequencing asLinepithema humile virus-1 (LHUV-1), a novel strain of Kashmir bee virus (KBV) and Black queen cell virus (BQCV), while the others were chimeric or misassembled sequences. We extended the known sequence of LHUV-1 to confirm its placement in the Dicistroviridae and categorised its relationship to closest relatives, which were all viruses infecting Hymenoptera. We examined further for known viruses by mapping our metatranscriptomic sequences to all viral genomes, and confirmed KBV, BQCV, LHUV-1 andDeformed wing virus (DWV) presence using qRT-PCR. Viral replication was confirmed for DWV, KBV and LHUV-1. Viral titers in ants were higher in the presence of honey bee hives. Argentine ants appear to host a range of’ honey bee’ pathogens in addition to a virus currently described only from this invasive ant. The role of these viruses in the population dynamics of the ant remain to be determined, but offer potential targets for biocontrol approaches. Social insects carry a range of viruses that can have a major effect on host population dynamics.
    [Show full text]
  • Virion Structure and Genome Delivery Mechanism of Sacbrood Honeybee Virus
    Virion structure and genome delivery mechanism of sacbrood honeybee virus a a a a a b Michaela Procházková , Tibor Füzik , Karel Skubník , Jana Moravcová , Zorica Ubiparip , Antonín Pridal , and Pavel Plevkaa,1 aCentral European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and bFaculty of Agronomy, Mendel University, 613 00 Brno, Czech Republic Edited by Wolfgang Baumeister, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved June 14, 2018 (received for review December 22, 2017) Infection by sacbrood virus (SBV) from the family Iflaviridae is at the virion surface. No similar proteins have been observed in lethal to honey bee larvae but only rarely causes the collapse of any virus from the order Picornavirales. A comparison of the honey bee colonies. Despite the negative effect of SBV on honey structure of SBV with the structures of other iflaviruses indicates bees, the structure of its particles and mechanism of its genome that the protein evolved from an ancestral C-terminal extension delivery are unknown. Here we present the crystal structure of of the VP3 subunit through the introduction of a cleavage site for SBV virion and show that it contains 60 copies of a minor capsid virus-encoded protease. In addition, we show that the MiCP protein (MiCP) attached to the virion surface. No similar MiCPs induces the disruption of liposome membranes and thus may have been previously reported in any of the related viruses from facilitate delivery of the SBV genome into the cytoplasm. the order Picornavirales. The location of the MiCP coding sequence Results and Discussion within the SBV genome indicates that the MiCP evolved from a C- terminal extension of a major capsid protein by the introduction of SBV Virion Structure and Its Comparison with Iflaviruses Containing P-Domains.
    [Show full text]