ESD in Silicon Integrated Circuits

Total Page:16

File Type:pdf, Size:1020Kb

ESD in Silicon Integrated Circuits ESD in Silicon Integrated Circuits, 2nd Edition Ajith Amerasekera, Charvaka Duvvury Copyright c 2002 John Wiley & Sons, Ltd ISB N s : 0-471-49871-8 (Hardback); 0-470-84605-4 (Electronic) ESD in Silicon Integrated Circuits Second Edition ESD in Silicon Integrated Circuits Second Edition Ajith Amerasekera Charvaka Duvvury Texas Instruments, Inc., USA With Warren Anderson Compaq Computer Corporation, USA Horst Gieser Fraunhofer Institute for Reliability and Microintegration IZM ATIS, Germany Sridhar Ramaswamy Texas Instruments, Inc., USA Copyright c 2002 by John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO 19 1UD, England Phone (+44) 1243 779777 e-mail (for orders and customer service enquiries): [email protected] Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a license issued by the Copyright Licensing Agency Ltd., 90 Tottenham Court Road, London W1P 0LP, UK without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO 19 1UD, England, or emailed to [email protected], or faxed to (+44) 1243 770571. Other Wiley Editorial Offices John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia, Ltd., 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd., 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada, Ltd., 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0 470 49871 8 Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India. Printed and bound in Great Britain by Antony Rowe Ltd., Chippenham, Wiltshire. This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. Contents Preface ix 1 Introduction 1 1.1 Background 1 1.2 The ESD Problem 3 1.3 Protecting Against ESD 4 1.4 Outline of the Book 4 Bibliography 7 2 ESD Phenomenon 8 2.1 Introduction 8 2.2 Electrostatic Voltage 9 2.3 Discharge 11 2.4 ESD Stress Models 12 Bibliography 15 3 Test Methods 17 3.1 Introduction 17 3.2 Human Body Model (HBM) 18 3.3 Machine Model (MM) 27 3.4 Charged Device Model (CDM) 28 3.5 Socket Device Model (SDM) 40 3.6 Metrology, Calibration, Verification 42 3.7 Transmission Line Pulsing (TLP) 47 3.8 Failure Criteria 58 3.9 Summary 60 Bibliography 61 4 Physics and Operation of ESD Protection Circuit Elements 68 4.1 Introduction 68 4.2 Resistors 68 4.3 Diodes 70 vi CONTENTS 4.4 Transistor Operation 77 4.5 Transistor Operation under ESD Conditions 85 4.6 Electrothermal Effects 95 4.7 SCR Operation 98 4.8 Conclusion 101 Bibliography 102 5 ESD Protection Circuit Design Concepts and Strategy 105 5.1 The Qualities of Good ESD Protection 106 5.2 ESD Protection Design Methods 109 5.3 Selecting an ESD Strategy 123 5.4 Summary 124 Bibliography 124 6 Design and Layout Requirements 126 6.1 Introduction 126 6.2 Thick Field Device 127 6.3 nMOS Transistors (FPDs) 132 6.4 Gate-Coupled nMOS (GCNMOS) 138 6.5 Gate Driven nMOS (GDNMOS) 149 6.6 SCR Protection Device 150 6.7 ESD Protection Design Synthesis 155 6.8 Total Input Protection 164 6.9 ESD Protection Using Diode-Based Devices 172 6.10 Power Supply Clamps 176 6.11 Bipolar and BiCMOS Protection Circuits 179 6.12 Summary 183 Bibliography 184 7 Advanced Protection Design 188 7.1 Introduction 188 7.2 PNP-Driven nMOS (PDNMOS) 188 7.3 Substrate Triggered nMOS (STNMOS) 189 7.4 nMOS Triggered nMOS (NTNMOS) 192 7.5 ESD for Mixed-Voltage I/O 200 7.6 CDM Protection 214 7.7 SOI Technology 215 7.8 High-Voltage Transistors 216 7.9 BiCMOS Protection 218 7.10 RF Designs 219 7.11 General I/O Protection Schemes 220 7.12 Design/Layout Errors 221 7.13 Summary 223 Bibliography 224 CONTENTS vii 8 Failure Modes, Reliability Issues, and Case Studies 228 8.1 Introduction 228 8.2 Failure Mode Analysis 229 8.3 Reliability and Performance Considerations 238 8.4 Advanced CMOS Input Protection 239 8.5 Optimizing the Input Protection Scheme 242 8.6 Designs for Special Applications 249 8.7 Process Effects on Input Protection Design 253 8.8 Total IC Chip Protection 255 8.9 Power Bus Protection 256 8.10 Internal Chip ESD Damage 258 8.11 Stress Dependent ESD Behavior 263 8.12 Failure Mode Case Studies 267 8.13 Summary 271 Bibliography 272 9 Influence of Processing on ESD 282 9.1 Introduction 282 9.2 High Current Behavior 284 9.3 Cross Section of a MOS Transistor 287 9.4 Drain-Source Implant Effects 288 9.5 p-Well Effects 293 9.6 n-Well Effects 294 9.7 Epitaxial Layers and Substrates 295 9.8 Gate Oxides 298 9.9 Silicides 300 9.10 Contacts 304 9.11 Interconnect and Metalization 305 9.12 Gate Length Dependencies 306 9.13 Silicon-on-Insulator (SOI) 310 9.14 Bipolar Transistors 312 9.15 Diodes 314 9.16 Resistors 315 9.17 Reliability Trade-Offs 316 9.18 Summary 317 Bibliography 320 10 Device Modeling of High Current Effects 326 10.1 Introduction 326 10.2 The Physics of ESD Damage 327 10.3 Thermal (“Second”) Breakdown 330 10.4 Analytical Models Using the Heat Equation 335 10.5 Electrothermal Device Simulations 339 viii CONTENTS 10.6 Conclusion 344 Bibliography 345 11 Circuit Simulation Basics, Approaches, and Applications 350 11.1 Introduction 350 11.2 Modeling the MOSFET 351 11.3 Modeling Bipolar Junction Transistors 367 11.4 Modeling Diffusion Resistors 371 11.5 Modeling Protection Diodes 375 11.6 Simulation of Protection Circuits 376 11.7 Electrothermal Circuit Simulations 382 11.8 Conclusion 385 Bibliography 389 12 Conclusion 394 12.1 Long-Term Relevance of ESD In ICs 394 12.2 State-of-the-Art for ESD Protection 395 12.3 Current Limitations 396 12.4 Future Issues 398 Bibliography 399 Index 401 Preface In the seven years since the first edition of this book was completed, Electrostatic Discharge (ESD) phenomena in integrated circuits (IC) continues to be important as technologies shrink and the speed and size of the chips increases. The phenom- ena related to ESD events in semiconductor devices take place outside the realm of normal device operation. Hence, the physics governing this behavior are not typ- ically found in general textbooks on semiconductors. Similarly the circuit design issues involve nonstandard approaches that are not covered in general books on electronic design. There has been a large amount of work done in the areas of ESD circuit design and the physics involved, most of which has been published in a number of papers and conference proceedings. This book covers the state- of-the-art in circuit design for ESD prevention as well as the device physics, test methods, and characterization. We also include case studies showing examples of approaches to solving ESD design problems. For the second edition, we have completely revised a number of chapters and brought other chapters up to date with the latest learning. The last seven years have seen many developments in the understanding of ESD phenomenon and the issues related to circuit and transistor design, as well as to modeling and simulation. The book is intended for those working in the field of IC circuit design and tran- sistor device design. In addition, the basics presented in this book should also appeal to graduate students in the field of semiconductor reliability and device/circuit mod- eling. As the problems associated with ESD become significant in the IC industry the demand for graduates with a basic knowledge of ESD phenomena also increases. We hope that this book will help students meet the demands of the IC industry in terms of understanding and approaching ESD problems in semiconductor devices. There are many companies and research institutes that have made it possible to understand and solve the majority of ESD problems in ICs. Some of the companies that have been particularly active in recent years are Texas Instruments, Philips Semiconductors, Lucent, Rockwell, IBM, Motorola, DEC/Compaq, David Sarnoff Labs, and Intel. Research Institutes that have made significant contributions in recent years are Sandia National Labs, Clemson University, Stanford University, the University of California in Berkeley, the University of Western Ontario in Canada, the University of Illinois at Urbana-Champain, Twente University in The Netherlands, the Technical University of Munich and the Fraunhofer Institute both in Germany, and IMEC in Belgium. We have many people to thank for their contributions to our personal knowledge and understanding in this area. We would particularly like to thank Robert Rountree, x PREFACE Thomas Polgreen, and Amitava Chatterjee for their contributions both at the circuit design and at the device level. Ping Yang and William Hunter have provided excellent technical guidance during the evolution of the work on ESD, and without their management support this work would not have been undertaken in the first place.
Recommended publications
  • Mechanical and Electrical Studies of Silicone Modified Polyurethane
    Polymer Journal, Vol. 36, No. 10, pp. 848—855 (2004) Mechanical and Electrical Studies of Silicone Modified Polyurethane–Epoxy Intercrosslinked Networks y Arun ANAND PRABU and Muthukaruppan ALAGAR Department of Chemical Engineering, Anna University, Chennai-600 025, India (Received May 27, 2004; Accepted July 20, 2004; Published October 15, 2004) ABSTRACT: A series of intercrosslinked networks (ICNs) based on silicone modified polyurethane (PU)–epoxy resins were developed. In this study, epoxy resin (diglycidyl ether of bisphenol-A) was modified with PU prepolymer and hydroxyl-terminated polydimethylsiloxane (HTPDMS) using -aminopropyl triethoxysilane ( -APS) as silane cross linker and dibutyltindilaurate (DBTL) as catalyst to form ICNs. Aromatic polyamine adduct (A), diethylenetri- amine (B) and polyamidoamine (C) were used as epoxy curatives. The final products were obtained in the form of tough films. Changes in chemical structure during ICN formation, mechanical and electrical properties were investigated us- ing FT-IR spectra, tensile, impact and dielectric testing. The mechanical properties were enhanced with incorporation of PU (10 wt %) and silicone (10 wt %) due to the toughening of brittle epoxy matrices. Electrical properties showed a marginally decreasing trend with the incorporation of PU (0–20 wt %) influenced by the polar urethane linkages where- as silicone incorporation (10 wt %) showed an enhancement due to the presence of inorganic –Si–O–Si– linkage. Among the systems studied, the silicone (10 wt %) modified PU (10 wt %)–epoxy cured with ‘‘A’’ exhibited excellent mechanical and electrical characteristics and can be used as coatings and composites for industrial, electrical and ma- rine components. [DOI 10.1295/polymj.36.848] KEY WORDS Intercrosslinked Network / Epoxy / Polyurethane / Silicone / Coatings / Composites / Numerous polymeric resins based on epoxy, unsat- used in epoxy and polyurethane synthesis.
    [Show full text]
  • Innovative Silicone Solutions
    Toronto Head Office, Research Lab and Plant Mississauga, Ontario, Canada Plant Siltech Corporation Siltech LLC (Personal Care Applications) 225 Wicksteed Avenue 1625 Lakes Parkway . Suite O Toronto . Ontario . Canada Lawrenceville . GA . USA M4H 1G5 30043 Telephone: 416.424.4567 Telephone: 678.442.0210 Facsimile: 416.424.3158 Facsimile: 678.442.9624 www.siltech.com ISO 9001:2008 Registered Aug/2016 INNOVATIVE SILICONE SOLUTIONS 14 Silicon : The 14th element in the periodic table; chemical symbol; Si, density = 2.33g/ml; molar mass = 28.09 g/mol; melting point = 1,420°C; boiling point = 3,265°C; electronic 2 2 Siltech is a privately owned business, managed and operated by the owners for more than 20 years. configuration [Ne]3s p ; metallic-looking; does not occur naturally in free form; in its combined We hope and believe that the pride we feel in this company channels its way through each of our form, accounts for 27.6% of the Earth’s crust; 2nd most abundant element on Earth after oxygen employees and to every customer. and one of the 10 most abundant elements in the solar system - 4.47 x 10 7 (rel. to [H] = 1 x 10 12). Siltech is a place where someone answers the phone when you call. It is a place where we feel passion about the quality of our products and realize that our livelihood depends on satisfying you, our customer. And it is a place where you can source products with confidence. Siltech develops and manufactures a full line of organo-functional silicone compounds and related specialties for a wide range of industrial and personal care applications, using our patented and otherwise proprietary technologies.
    [Show full text]
  • Basic Silicone Chemistry – a Review
    Editors Note: This edition of the Silicone Spectator is presenting a general article on Silicone Chemistry written in 1999. While the paper was written a long while ago the contents are still topical today. We hope you enjoy. Basic Silicone Chemistry – A Review Anthony J. O’Lenick, Jr. Siltech LLC Dacula, Ga. 30019 First Published: August 1999 This review has been written with the objective of supplying a working knowledge of the chemistry of silicone compounds to the practicing chemist. It has been divided into two parts, the first dealing with basic chemistry of silicones, and the second dealing with silicone based surfactants. Despite the fact that silicone compounds have been around for over fifty years, the chemistry of these materials remains elusive to the average formulating chemist. This is indeed unfortunate, since the chemistry of silicon atom and resulting silicone compounds is every bit as wide in scope and rich in content as the chemistry of the carbon atom and the resulting surfactant chemistry upon which it is based. Whilst the chemistry upon which surfactants are commonly based has been around for almost exactly the same period as that of the basic silicone chemistry, it is only in the past decade that the ability to use silicone as a hydrophobic material in the preparation of surfactants has been common. The recent trend to combine silicone, fatty and polyoxyalkylene moieties in the same molecule has resulted in a plethora of new compounds with new properties. Introduction Silicon is the 14th element in the periodic table. Although it does not occur naturally in free form, in its combined form it accounts for about 25% of the earth's crust.
    [Show full text]
  • (Quartz) Silica, Sio2, Is a White Or Colorless Crystalline Compound
    Silica (quartz) Silica, SiO2, is a white or colorless crystalline compound found mainly as quartz, sand, flint, and many other minerals. Silica is an important ingredient to manufacture a wide variety of materials. Quartz; Quartz is the most abundant silica mineral. Pure Quartz is colorless and transparent. It occurs in most igneous and practically all metamorphic and sedimentary rocks. It is used as a component of numerous industrial materials. Silicon (Si) has the atomic number 14 and is closely related to carbon. It is a relatively inert metalloid. Silicon is often used for microchips, glass, cement, and pottery. Silica is the most abundant mineral found in the crust of the earth. One of the most common uses of silica quarts is the manufacturer of glass. Silica is the fourteenth element on the periodic table. It can sometimes be found as the substance, quartz which is usually used in jewelry, test tubes, and when placed under pressure, generates an electrical charge. Quartz is the second most abundant mineral in the Earth's crust. It is a clear, glossy mineral with a hardness of 7 on the MOHS scale. Silica, Sa,is a component of glass and concrete. A form of Silica commonly known as quartz, Silica tetrahedra, is the second most common mineral in the earth's crust, it comes in many different forms. Silica is a compound of silicon and oxygen. Earth's outer crust contains 59% of this material. It has three major rock forms, which are quartz, tridymite, and cristobalite. Silica, commonly known in the form of quartz, is the dioxide form of silicon, SiO2.
    [Show full text]
  • Silicone Rubber Science
    Silicone Guide Power Chemical Corporation Limited Silicone Rubber Power Chemical Corporation Limited Silicone Rubber Quality & lower price is our commitment. Background Structure and Chemistry Silanes Siloxanes Classes of Silicone Rubbers Industrial Classifications Synthesis of Silicones Other Components in Silicones Curing Additives Fillers Other Additives Manufacture Liquid Silicone Rubbers Room Temperature Vulcanising (RTV) Rubbers Key Properties Advantages Disadvantages Thermal Stability Flexibility Resistance to Hydrocarbons, Oils and Solvents Gas Permeability Electrical Properties Applications Mechanical Engineering Electrical Engineering Medical - 2 - ©2011 Power Chemical Corporation Limited. SiSiB® is a registered trademark of PCC. www.PCC.asia www.SiSiB.com Power Chemical Fax: +86-25-8468-0091 Tel: +86-25-8468-0092 ISO9001 ISO14001 certificated June 2011 Silicone Rubber Quality & lower price is our commitment. Background Dumas predicted the existence of silicone rubbers ion 1840. However, it was not until 1872, that Ladenburg produced the first example, a very viscous oil, by reacting diethoxydiethysilane with water and trace amounts of acids. The first commercial grades were produced in 1943 by the Dow Chemical Company, with many other companies following shortly after. Back Structure and Chemistry Silanes Silanes are analogous to hydrocarbons, i.e, the basic building block of hydrocarbons is the CH4 (methane) group, while that for silianes is SiH4 (silane) and the basic structure is SiH3(SiH2)nSiH3. These materials have the Si-Si-Si backbone and the resultant structures are named based on the number of silicon atoms in the chain i.e. silane, disilane, trisilane, tetrasilane etc etc. Furthermore, similar substitutions can take place, as is the case with hydrocarbons, e.g.
    [Show full text]
  • Silicon Xanes Assessment of the Silicone Oil Content of Gems in Idps
    Lunar and Planetary Science XLVIII (2017) 1059.pdf SILICON XANES ASSESSMENT OF THE SILICONE OIL CONTENT OF GEMS IN IDPS . G. J. Flynn 1, S. Wirick 2, A. L. Butterworth 3, Z. Gainsforth3, A. J. Westphal 3, B. Kaulich 4, T. Araki 4, M. Abyaneh 4, and T. Ty- liszczak 5. 1Dept. of Physics, SUNY-Plattsburgh, Plattsburgh, NY 12901 USA ( [email protected] ), 2Focused Beam Enterprises, Westhampton, NY 11977, 3Space Sciences Laboratory, University of California, Berke- ley, CA 94720, 4Diamond Light Source, Didcot, Oxfordshire OX11 0DE, UK, 5Advanced Light Source, 6 Cyclotron Rd., Berkeley, CA 94720 Introduction: Glass with Embedded Metal and copy, and Si x-ray absorption near-edge structure Sulfides (GEMS) is a major component in many chon- (XANES) spectroscopy provides a technique to assess dritic porous interplanetary dust particles (CP IDPs). the silicone oil content of GEMS. Barranco et al. [8] Based on the similarity of GEMS to the properties of performed Si-XANES on SiO xCyHz polymeric thin interstellar silicates, inferred from astronomical obser- films having compositions with different C/O atomic vations, Bradley [1] proposed that GEMS are surviv- ratios. They also measured Si-XANES spectra of Si- ing interstellar silicates. The GEMS in CP IDPs have carbide and SiO 2 and found that the energy of the onset been extensively studied over the past two decades. of the Si K absorption edge varied with the composi- Synchrotron-based infrared spectroscopy showed a tion from 1840 eV in SiC to 1844 eV in SiO 2. Because good match between the 10 micron Si-O absorption the Si-C and Si-O bonds absorb at significantly differ- feature of GEMS in CP IDPs and the silicates in two ent energies, Si-XANES is a particularly effective molecular clouds as well as in the regions surrounding technique to assess the ratio of Si-C to Si-O bonding at a T-Tauri star and a post-main sequence M star [2].
    [Show full text]
  • Silicone Rubber Compounds Meeting the Increasingly Diverse and Sophisticated Needs of Industry with the Unique Properties of Silicone Rubbers
    Characteristic properties of Silicone Rubber Compounds Meeting the increasingly diverse and sophisticated needs of industry with the unique properties of silicone rubbers The main ingredients of Shin-Etsu’s silicone rubber compounds are unique raw silicone rubber gum and high-purity silica. Silicone rubber compounds have characteristics of both inorganic and organic materials, and offer a number of advantages not found in other organic rubbers. Silicone rubbers have fine electrical properties, good chemical stability and flame retardancy, and superior resistance to heat and cold. They are thus used in nearly every industry to improve the quality and functionality of products including electric and electronic equipment, office automation equipment, automobiles, food products, household goods, and leisure products. ■ Contents General properties of silicone 3 Heat and cold resistance 4 Weatherability 5 Moisture and steam resistance 5 Resistance to oils, solvents, and other chemicals 6, 7 Electrical insulation 8 Thermal conductivity 9 Flame retardancy 9 Electrical conductivity 9 Compression set 10 Flex fatigue resistance 10 Tear strength and tensile strength 11 Gas permeability 12 Transparency and coloring properties 12 Radiation resistance 13 Vibration absorption 14 Releasability and Non-corrosivity 14 Physiologically inert 14 The fine properties of silicone rubber 15 2 General properties of silicone High binding energy The siloxane bonds (–Si–O–Si–) that form the backbone of silicone (dimethyl polysiloxane) are highly stable. At 433 kJ/mol, their binding energy is higher than that of carbon bonds (C–C), at 355 kJ/mol. Thus, compared to common organic polymers, silicone rubbers have higher heat resistance and chemical stability, and provide better electrical insulation.
    [Show full text]
  • Silicone Rubber Material Benefits and Fabrication Advantages
    Silicone Rubber Material Benefits and Fabrication Advantages A Lubrizol Company The Facts About Silicone Rubber Selecting a high-quality elastomer for critical today, it is often difficult to recognize the optimum applications, particularly medical devices, can be solution. Further, the implications of selecting an a challenge. Designers, engineers and managers inferior material may cause a project to fail. must carefully evaluate a wide array of material properties and processing possibilities in order To make the most informed decision, it is helpful to meet demanding performance specifications to gather as much data as you can about each and budget requirements, so the performance material. This white paper is intended to provide criteria must be clearly defined. For example, you with factual information on silicone rubber durometer, elongation, modulus and tear must be elastomers, their properties, fabrication methods determined to specify the correct material. With so and advantages. many materials and fabrication methods available Silicones: Their History and Definition CH3 Since the 1960s, silicone rubber has found widespread use in medical, aerospace, electrical, construction and industrial applications. Flexibility over wide temperature Si O ranges, good resistance to compression set, a wide range of durometer selections, and inert and stable compounds are some of the reasons for its use. O CH3 CH3 Si CH3 Silicone rubbers are synthetic polymers with an unusual molecular structure — CH Si CH CH O 3 3 3 a giant backbone of alternating silicon and oxygen atoms. This linkage is similar to the O Si linkage found in quartz, thus silicones have superior heat resistance compared to other elastomers.
    [Show full text]
  • A Plasma Polymerization Investigation and Low Temperature Cascade Arc Plasma for Polymeric Surface Modification
    A PLASMA POLYMERIZATION INVESTIGATION AND LOW TEMPERATURE CASCADE ARC PLASMA FOR POLYMERIC SURFACE MODIFICATION A Dissertation presented to the Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by MARY A. GILLIAM Dr. Qingsong Yu, Faculty Advisor AUGUST 2006 © Copyright by Mary A. Gilliam 2006 All Rights Reserved The undersigned, appointed by the Dean of the Graduate School, have examined the Dissertation entitled A PLASMA POLYMERIZATION INVESTIGATION AND LOW TEMPERATURE CASCADE ARC PLASMA FOR POLYMERIC SURFACE MODIFICATION Presented by MARY A. GILLIAM A candidate for the degree of DOCTOR OF PHILOSOPHY And hereby certify that in their opinion it is worthy of acceptance. Prof. Qingsong Yu Prof. David Retzloff Prof. Scott Kovaleski Prof. Stephen Lombardo Prof. William Jacoby To Ben, Alice, and Sam… AKNOWLEDGEMENTS I would like to express my sincere gratitude to both Dr. Yasuda and Dr. Yu for their support and guidance throughout my graduate career. I deeply appreciate the knowledge and experience I have gained from their vast insight in plasma technologies and interfacial engineering and I am honored to be their student. Sincere thanks to Dr. Sunnyu Lee for serving as my co-advisor for some time and mostly for his friendship and encouragement as a mentor. I would also like to thank my distinguished PhD Committee members and I am honored to be considered worthy by them of a PhD. Many thanks to my colleagues at the Surface Science and Plasma Technology Center for their friendship and collaboration: Kevin Young for helping me to become acclimated with the technologies, Bruce Huang for his friendship, encouragement, and insightful discussions, Andrew Ritts for his valuable contribution to the surface modification project, Jameel Feshitan for his helpful assistance with static contact angle and OES data, Yenfong Chan, and Young Jo Kim for their friendship and discussions.
    [Show full text]
  • 170295 New-Epoxy-Resins Nonpricing Web.Pdf
    170_New Epoxy Resins_NonPricing_Epoxy Resins.4 1/27/17 12:43 PM Page 1 170_New Epoxy Resins_NonPricing_Epoxy Resins.4 1/27/17 12:43 PM Page 2 Gelest, Inc. Telephone: General 215-547-1015 Order Entry 888-734-8344 FAX: 215-547-2484 Internet: www.gelest.com e-mail: [email protected] Correspondence: 11 East Steel Rd. Morrisville, PA 19067 For further information consult our web site at: www.gelest.com In Europe: In South-East Asia: Gelest Inc. For commercial and research quantities contact: Stroofstrasse 27 Geb.2901 Gulf Chemical 65933 Frankfurt am Main, 39 Jalan Pemimpin Germany Tai Lee Industrial Building #04-03 Tel: +49-(0)-69-3800-2150 Singapore 577182 Fax: +49-(0)-69-3800-2300 Tel: 65-6358-3185 e-mail: [email protected] Fax: 65-6353-2542 Internet: www.gelestde.com e-mail: [email protected] In Japan: In India: For commercial and For commercial and research quantities contact: research quantities contact: Gautavik International AZmax Co. Ltd. Tokyo Office 301, A Wing Chandan Co-op Hsg Soc. TEKKO KAIKAN 5F Dadabhai Cross Road North 3-2-10 Kayabacho Nihonbashi Vile Parle West, Mumbai 400056 Chuo-ku, Tokyo 103-0025 India Tel: 81-3-6661-1090 Tel: 91-22-26703175 e-mail: [email protected] Fax: 91-96-19190510 on-line catalog: www.azmax.co.jp e-mail: [email protected] In Taiwan: For commercial and research quantities contact: Kelly Chemical Corporation 9F, No.155, Sec.1, Keelung Rd, Taipei. Taiwan Tel: +886-2-27621985 Fax: +886-2-27532400 website: http://www.kellychemical.com e-mail: [email protected] Sales of all products listed are subject to the Commercial Status - produced on a regular published terms and conditions of Gelest, Inc.
    [Show full text]
  • Silicon Chemistry and Silicone Breast Implants
    Eur J Plast Surg (2014) 37:123–128 DOI 10.1007/s00238-013-0914-4 REVIEW Silicon chemistry and silicone breast implants Rita M. Kappel & Antonius J. H. Klunder & Ger J. M. Pruijn Received: 15 July 2013 /Accepted: 15 November 2013 /Published online: 30 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Breast implants are applied to correct the size, form, Introduction and feel of a woman’s breasts in post-mastectomy breast reconstruction, for correcting congenital defects and deformi- Silicone gel implants have been widely used for breast ties of the chest wall, for aesthetic breast augmentation, and augmentation and reconstruction since the 1960s. for creating breasts in the male-to-female transsexual patient. Although their design has been altered over the years, The most widely applied silicone implants have an elastomer including changes to the cohesiveness of the silicone filler silicone shell filled with viscous silicone gel. It has become gel and texturing of the shell, the basic device design increasingly clear that it is important for plastic surgeons to remains a silicone elastomer shell surrounding a viscous know and to provide patients with the latest information on silicone gel. The biocompatibility and safety of silicone silicone breast implants. This article was therefore written to implants have been a source of long-standing controversy. provide more insight into the composition of silicone breast In this respect, it is not only important to consider effects implants and their characteristics. After describing the chem- of the elastomer shell but also of the filler gel, because ical properties of silicones and silicone implants, gel bleeding over the years the majority of the silicone implants will be and the consequences of aging of silicone implants will be ruptured, i.e., tears may occur in the implant shell, which discussed.
    [Show full text]
  • Silicone Biomaterials: History and Chemistry &
    Silicone Biomaterials: History and Chemistry & Medical Applications of Silicones André Colas Jim Curtis Dow Corning Corporation Reprinted from nd Biomaterials Science, 2 Edition with kind permission of the publisher, Elsevier, Inc. To purchase the book Biomaterials Science: An Introduction to Materials in Medicine with a 10% discount, visit www.books.elsevier.com/bioengineering and use the discount code 83661. About the Authors Dr. André Colas Healthcare Industry Scientist André joined Dow Corning in 1978 after completing his PhD in organic physico-chemistry at Brussels’ University (ULB) and worked in different locations on the development of new silicone products. In 1994, he joined the Healthcare business as RD and Production Director of "Laboratoires Dow Corning" in France, working on technologies for the controlled delivery of actives, wound dressings, silicone excipients and surface biocompatibility. In his current role, André is responsible for identifying and validating new and innovative opportunities for Healthcare. Dr. Colas is the author of 15 US patents, 7 articles, and 20 scientific presentations. He is currently a board member of the APGI association, which deals with the formulation of pharmaceuticals in industry. Jim Curtis, Technology Leader, Medical Device Operations Jim’s current activities include project leadership activities with Dow Corning healthcare materials, and the investigation of medical device-associated issues. He has worked in the medical device field for nearly twenty-five years. He helped develop a number of Dow Corning plastic surgery products, most notably the SILASTIC® MSI line of breast implants and tissue expanders. Mr. Curtis has one US and two European patents for developments in breast implant technology.
    [Show full text]