Spin-1/2 Fermions in Quantum Field Theory
Spin-1/2 fermions in quantum field theory µ First, recall that 4-vectors transform under Lorentz transformations, Λ ν, as p′ µ = Λµ pν, where Λ SO(3,1) satisfies Λµ g Λρ = g .∗ A Lorentz ν ∈ ν µρ λ νλ transformation corresponds to a rotation by θ about an axis nˆ [θ~ θnˆ] and ≡ a boost, ζ~ = vˆ tanh−1 ~v , where ~v is the corresponding velocity. Under the | | same Lorentz transformation, a generic field transforms as: ′ ′ Φ (x )= MR(Λ)Φ(x) , where M exp iθ~·J~ iζ~·K~ are N N representation matrices of R ≡ − − × 1 1 the Lorentz group. Defining J~+ (J~ + iK~ ) and J~− (J~ iK~ ), ≡ 2 ≡ 2 − i j ijk k i j [J± , J±]= iǫ J± , [J± , J∓] = 0 . Thus, the representations of the Lorentz algebra are characterized by (j1,j2), 1 1 where the ji are half-integers. (0, 0) is a scalar and (2, 2) is a four-vector. Of 1 1 interest to us here are the spinor representations (2, 0) and (0, 2). ∗ In our conventions, gµν = diag(1 , −1 , −1 , −1). (1, 0): M = exp i θ~·~σ 1ζ~·~σ , butalso (M −1)T = iσ2M(iσ2)−1 2 −2 − 2 (0, 1): [M −1]† = exp i θ~·~σ + 1ζ~·~σ , butalso M ∗ = iσ2[M −1]†(iσ2)−1 2 −2 2 since (iσ2)~σ(iσ2)−1 = ~σ∗ = ~σT − − Transformation laws of 2-component fields ′ β ξα = Mα ξβ , ′ α −1 T α β ξ = [(M ) ] β ξ , ′† α˙ −1 † α˙ † β˙ ξ = [(M ) ] β˙ ξ , ˙ ξ′† =[M ∗] βξ† .
[Show full text]