Iodine Monochloride Spotlight 345 Compiled by Luana Silva Magalhães Da Forezi

Total Page:16

File Type:pdf, Size:1020Kb

Iodine Monochloride Spotlight 345 Compiled by Luana Silva Magalhães Da Forezi SPOTLIGHT 585 SYNLETT Iodine Monochloride Spotlight 345 Compiled by Luana Silva Magalhães da Forezi Luana da Silva Magalhães Forezi was born in Recreio/MG, Brazil This feature focuses on a re- in 1984. She received her chemistry degree from the Universidade agent chosen by a postgradu- Federal de Juiz de Fora (UFJF), Juiz de Fora/MG, Brazil in 2008. ate, highlighting the uses and She is currently in the final stages of her M.Sc. studies in organic preparation of the reagent in chemistry, at the Universidade Federal Fluminense, under the su- current research pervision of the Professors Maria Cecília Bastos Vieira de Souza and Fernanda da Costa Santos. Her research interests are focused on the synthesis of new compounds, such as ribonucleoside deriva- tives. Instituto de Química, Universidade Federal Fluminense, CEP 24020-141 Niterói, Rio de Janeiro, Brazil E-mail: [email protected] Introduction by adding an aqueous solution of potassium iodate to po- tassium iodate dissolved in concentrated HCl, in a closed Iodine monochloride is a chemical compound with the vessel to avoid the loss of chlorine.2 Iodine monochloride formula ICl. Because of the difference in the electronega- is a versatile reagent for the synthesis of a large number of tivity of iodine and chlorine, ICl is highly polar and be- organic compounds being employed, for example, as a haves as a source of I+. Iodine monochloride is a low source of electrophilic iodine in the synthesis of certain melting black or brownish-red solid and widely available aromatic iodides.3 It cleaves C–Si bonds4 and can be used (usually in 97–98% purity). It is soluble in alcohol, ether, in the electrophilic addition to the double bond in alkenes 5 CS2, acetic acid, acetone and pyridine and hydrolyzes in leading to chloroiodoalkanes. When iodine monochlo- water to HCl and IOH. ICl explodes on contact with po- ride is reacted with sodium azide in situ, the iodoazide tassium metal, mixes with sodium metal, and it can ex- product is obtained.6 Other examples of synthetic applica- plode if impacted. Its reaction with PCl3 is extremely tions of this reagent also include electrophilic substitu- exothermic.1 Iodine monochloride can be easily prepared tions in Csp2 and electrophilic cyclizations.7–9 Abstracts (A) Do and Daugulis showed that the iodination of pentachloroben- Cl Cl zene using a combination of iodine chloride and t-BuOLi in DMF Cl Cl I occurs in excellent yield (90%). Fluorine aromatic compounds like ICl 1,3,5-trifluorobenzene can be either mono- or triiodinated in accept- t-BuOLi able yields, depending on the ratio of the halobenzene to the iodine Cl Cl 90% Cl Cl 3 chloride. Cl Cl F F ICl (1 equiv) I t-BuOLi F F 58% F F F F I I ICl (4 equiv) t-BuOLi This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. F F 39% F F I (B) Silylthiophene derivatives as 3,4-difluoro-2,5-bis(trimethylsi- F F F F lyl)thiophene can be submitted to an electrophilic substitution reac- ICl CCl , 0 °C tion with iodine chloride in anhydrous carbon tetrachloride to give 4 TMS TMS 4 I I 3,4-difluoro-2,5-diiodothiophene in 80% yield. S S SYNLETT 2011, No. 4, pp 0585–0586 xx.xx.2011 Advanced online publication: 08.02.2011 DOI: 10.1055/s-0030-1259532; Art ID: V35310ST © Georg Thieme Verlag Stuttgart · New York 586 SPOTLIGHT (C) The addition of ICl to (Z)- and (E)-2-butene occurs in an anti- I H H stereospecific manner: the erythro-2-chloro-3-iodobutane can be ICl erythro formed by the addition of ICl to (E)-1-butene, while the other isomer CC CCl 4 H (threo) is formed by the addition of ICl to (Z)-1-butene.5 H Cl (E)-2-buteno I H ICl threo CC CCl 4 H H H Cl (Z)-2-buteno O (D) In their research efforts to modify citidine nucleosides, Verhey- O den and Moffatt showed that the treatment of enol ether nucleoside NH 1 with iodine azide, generated in situ from iodine chloride and sodi- NH um azide, afforded the 4′-azido nucleoside derivative 1a.6 N O N O ICl, NaN I 3 O O N 3 OH OH HO HO 11a H O (E) Goodman et al. reported the reaction between 2b-carbo(2-fluo- H O N ′ N roethoxy)-3-{3 -[(Z)-2-trimethylstannylethenyl]phenyl}nortropane ICl O(CH )nF 2 O(CH )nF (2) and ICl, leading to compound 4 in good yield. Similar results 2 CHCl ′ 3 were obtained in the case of 2b-carbo(2-fluoropropoxy)-3b-{3 - Sn(Me) 3 [(Z)-2-trimethylstannylethenyl]phenyl}nortropane (3).7 I 4 n = 2 (71%) 2 n = 2 5 n = 3 (55%) 3 n = 3 O (F) A set of 4-iodoisocoumarins were efficiently prepared by elec- O MeO trophilic cyclization of ortho-(1-alkynyl)benzoates using iodine MeO O 8 OMe monochloride in dichlorometane. ICl CH Cl 2 2 Ar MeO C MeO 0 °C to r.t. C I Ar (G) Electrophilic cyclization of 2-chalcogene alkynyl anisole using SePh I ICl as an electrophile source produced 3-iodo-2-(phenylsela- C C R R nyl)benzofuran in good yield. Manarim et al. reported that for this ICl SePh CH Cl 2 type of reaction the product distributions were strongly dependent 2 O –20 °C, 1 h on the nature of the substituents in the aromatic ring of anisole and OMe on the chalcogen atom directly bonded to the triple bond.9 R = H (93%) R = Me (93%) R = OMe (90%) R = F (75%) References This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. (1) Brisbois, R. G.; Wanke, R. A.; Stubbs, K. A.; Stick, R. V. V.; Ma, H.; Maile, G.; Merrett, J. H.; Pichota, A.; Sarma, K.; Iodine Monochloride, In Encyclopedia of Reagents for Smith, M.; Swallow, S.; Symons, J.; Vesey, D.; Najera, I.; Organic Synthesis; John Wiley & Sons: West Sussex, UK, Cammack, N. Bioorg. Med. Chem. Lett. 2007, 17, 2570. 2004. (7) Stehouwer, J. S.; Jarkas, N.; Zeng, F.; Voll, R. J.; Williams, (2) Beck, M. T.; Ribai, G. J. Phys. Chem. 1986, 90, 2204. L.; Camp, V. M.; Malveaux, E. J.; Votaw, J. R.; Howell, L.; (3) Do, H.; Daugulis, O. Org. Lett. 2009, 11, 421. Owens, M. J.; Goodman, M. M. J. Med. Chem. 2008, 51, (4) Cardone, A.; Martinelli, C.; Pinto, V.; Babudri, F.; Losurdo, 7788. M.; Bruno, G.; Cosma, P.; Naso, F.; Farinola, G. M. (8) Roy, S.; Roy, S.; Neuenswamder, B.; Hill, D.; Larock, R. C. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 285. J. Comb. Chem. 2009, 11, 1128. (5) Schmida, G.; Gordon, J. Can. J. Chem. 1986, 64, 2171. (9) Manarim, F.; Roehrs, J. A.; Gay, R. M.; Brandão, R.; (6) Smith, D. B.; Martin, J. A.; Klumpp, K.; Baker, S. J.; Menezes, P. H.; Nogueira, C. W.; Zeni, G. J. Org. Chem. Blomgren, P. A.; Devos, R.; Granycome, C.; Heng, J.; 2009, 74, 2153. Hobbs, C. J.; Jiang, W.; Laxton, C.; Pogam, S. L.; Leveque, Synlett 2011, No. 4, 585–586 © Thieme Stuttgart · New York.
Recommended publications
  • Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane
    molecules Article Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane Andrew J. Peloquin 1, Srikar Alapati 2, Colin D. McMillen 1, Timothy W. Hanks 2 and William T. Pennington 1,* 1 Department of Chemistry, Clemson University, Clemson, SC 29634, USA; [email protected] (A.J.P.); [email protected] (C.D.M.) 2 Department of Chemistry, Furman University, Greenville, SC 29613, USA; [email protected] (S.A.); [email protected] (T.W.H.) * Correspondence: [email protected] Abstract: Through variations in reaction solvent and stoichiometry, a series of S-diiodine adducts of 1,3- and 1,4-dithiane were isolated by direct reaction of the dithianes with molecular diiodine in solution. In the case of 1,3-dithiane, variations in reaction solvent yielded both the equatorial and the axial isomers of S-diiodo-1,3-dithiane, and their solution thermodynamics were further studied via DFT. Additionally, S,S’-bis(diiodo)-1,3-dithiane was also isolated. The 1:1 cocrystal, (1,4-dithiane)·(I2) was further isolated, as well as a new polymorph of S,S’-bis(diiodo)-1,4-dithiane. Each structure showed significant S···I halogen and chalcogen bonding interactions. Further, the product of the diiodine-promoted oxidative addition of acetone to 1,4-dithiane, as well as two new cocrystals of 1,4-dithiane-1,4-dioxide involving hydronium, bromide, and tribromide ions, was isolated. Keywords: crystal engineering; chalcogen bonding; halogen bonding; polymorphism; X-ray diffraction Citation: Peloquin, A.J.; Alapati, S.; McMillen, C.D.; Hanks, T.W.; Pennington, W.T.
    [Show full text]
  • The Application of the Iodine - Azide Reaction in Thin-Layer Chromatography Studies of Pesticide Preparations
    THE APPLICATION OF THE IODINE - AZIDE REACTION IN THIN-LAYER CHROMATOGRAPHY STUDIES OF PESTICIDE PREPARATIONS By T. CSEHHATI* and F.OHSI Department of Biochemistry and Food Chemistry, Technical University Budapest Received October 3, 1981 Presented by Prof. Dr. R. LASZTITY Introduction With chemicals bcing uscd in wider and wider areas for plant protection, toxicologieal and ecological aspects become increasingly important. The formulation analysis of pesticides cannot be limitcd nowadays to the selective determination of the active agent: the identification and quantitative determi­ nation of impurities is becoming equally significant. The process is of particular importance with phosphoric ester derivatives, since they are more ore less toxic to human beings. Gas chromatographic analysis (GC) of these active agents has been developed many years ago [1]. However, the technique could not supplant thin-layer chromatography (TLC) [2] for the following reasons: a) thermally unstable phosphoric ester derivatives cannot be analyzed by GC; b) if flame ionization detectors are used, one cannot state whether the peaks indicating impurities correspond to presumably toxic side products of the active agents, or to othcr, non-toxic components of the formulation; c) a substantial part of the decomposition products formed in hydrolysis or oxidation proccsses are non-volatile. Consequently, GC methods can only be used when combined with additional processes to yield volatile products; d) the TLC technique, using non-destructive, selective detection processes, allows to isolate, in a much simpler manner as ~ompared to traditional GC, volatile and non-volatile organic phosphoric ester derivatives in amounts in the order of milligrams for further studies of structure identification and toxic properties.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,680,133 ODNE-CONTAINING AMNO-BENZOY, DERVATIVES of AMNO ACDS Vernon H
    Patented June 1, 1954 2,680,133 UNITED STATES PATENT OFFICE 2,680,133 ODNE-CONTAINING AMNO-BENZOY, DERVATIVES OF AMNO ACDS Vernon H. Wallingford, Ferguson, Mo., assignor to Mallinckrodt Chemical Works, St. Louis, Mo, a corporation of Missouri No Drawing. Application August 24, 1951, Serial No. 243,577 8 Claims. (C. 260-518) 2 This invention relates to iodine-containing proposed as X-ray contrast agents; but only a few amino-benzoyl derivatives of amino acids and of these are now recognized as being of any prac more particularly to 3-amino-2,4,6-triiodo deriva tical value. The problem remains of providing tives of benzoyl amino acid compounds and to a high degree of contrast for X-ray diagnosis with methods for their preparation. greater safety and comfort to the patient. This This application is a continuation-in-part of can be achieved, for example, by providing con my copending application Serial No. 94,253, filed trast agents that are (1) less toxic, so that larger May 19, 1949, now abandoned. amounts can be given to the patient; (2) more Briefly the invention comprises methods of soluble, so that greater concentrations of the con making certain compounds of a group having the O trast agent are possible; or (3) more opaque to formula: X-rays because of a greater proportion of iodine CO-N-R-COOH but without a corresponding increase in toxicity. ly Iodinated derivatives of benzoic acid are among I- I those compounds that have been proposed as 15 X-ray contrast agents. Although they appear to NE be promising X-ray contrast agents because of the large amount of iodine that they contain, the toxicity or the in Solubility of the known deriva tives of these compounds have generally been where R is selected from the group consisting of 20 found to be too great for this purpose.
    [Show full text]
  • Nuclear Substitution Reactions of Dibenzo-P-Dioxin Joseph Jacob Dietrich Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1957 Nuclear substitution reactions of dibenzo-p-dioxin Joseph Jacob Dietrich Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Dietrich, Joseph Jacob, "Nuclear substitution reactions of dibenzo-p-dioxin " (1957). Retrospective Theses and Dissertations. 1336. https://lib.dr.iastate.edu/rtd/1336 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NUCLEAR SUBSTITUTION REACTIONS OF DI3ENZC-£-BIOXIN by- Joseph Jacob Dietrich A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of 'DOCTOR OF PHILOSOPHY Major Subject : Organic Chemistry Approved: Signature was redacted for privacy. in Charge of I-'*ajor *.7ork Signature was redacted for privacy. Head of Ma nartment Signature was redacted for privacy. Dean of Graduate College Io?;a State College 1957 11 TABLE OF CONTENTS Page INTRODUCTION 1 -ISTJRICAL 5 Dibenzo-n-dioxin 5 Alkyl Derivatives Ô Carbonyl Derivatives 8 Carbozyl Derivatives 9 Dithiocarboxylate Derivatives 10 Halogen Derivatives 10 Hydroxy Derivatives 12 Methoxy Derivatives
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • Step-By-Step Guide to Better Laboratory Management Practices
    Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12
    [Show full text]
  • And Iodolactonization, and Cycloetherification
    Lewis base catalysis of bromo- and iodolactonization, SPECIAL FEATURE and cycloetherification Scott E. Denmark1 and Matthew T. Burk Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL 61801 Edited by Eric N. Jacobsen, Harvard University, Cambridge, MA, and approved July 13, 2010 (received for review April 17, 2010) Lewis base catalyzed bromo- and iodolactonization reactions have been developed and the effects of catalyst structure on rate and cyclization selectivity have been systematically explored. The effects of substrate structure on halolactonization reactions and the interaction of those effects with the effects of catalyst Fig. 1. General scheme of halocyclization reactions. structure have been investigated, leading to synthetically useful improvements in cyclization selectivity. The knowledge acquired was applied to the development of Lewis base catalyzed bromo- properties of chiral Lewis base catalysts from those of readily and iodocycloetherification reactions. The ability of some of the available achiral analogs is highly desirable. surveyed catalysts to influence the cyclization selectivity of Halolactonization and cycloetherification reactions can pro- halolactonization reactions demonstrates their presence in the duce either of two constitutional isomers, arising from cyclization transition structure of the product-determining cyclization step. in an exo or endo fashion (24). The ratio of the two isomers is This observation implies that chiral derivatives of these catalysts influenced largely by the substrate, the identity of the halogen, have the potential to provide enantioenriched products regardless and the choice of reaction conditions. Under conditions wherein of the rates or mechanisms of halonium ion racemization. the halonium ion is undergoing rapid exchange, the product- determining step must also be the stereochemistry-determining CHEMISTRY halocyclofunctionalization ∣ halogenation step.
    [Show full text]
  • The Effect of Solvents on the Formation of Complexes of Benzene with Iodine and with Iodine Monochloride* ,**
    Daehan rlwahak Hwoejee Valume 9, Number 4, 1965 Printed in Republic of Korea. The Effect of Solvents on the Formation of Complexes of Benzene with Iodine and with Iodine Monochloride* ,** by Sang Up Choi and Bu Yong Lee Department of Chemistry, Hanyang University (Received September 17, 1965) 벤젠과 요오드 또는 일염화요오드 사이의 錯物에 대한 용매의 영 향 漢陽大學校化學科 崔相案 •李富永 (1965. 9. 17 受理 ) 要 約 C6H6-I2 및 C6HEC1 의 두 錯物의 安定度에 미치는 용매의 영향을 자외선 分光光度法으로 硏究하였 다 . 클로로포름 , 시크로헥산 및 헥산 용액에서 (京 压・12생성에 대한 실온에서의 평형상수가 各各 0.090, 0.216 및 0. 328 Z moleT 이고 CgH^ICI 생성에 대한 실온에서의 평형상수가 各各 0.125, 0.67& 및 0.639/moleT 임 을 알았다 . 이 結果로부터 이들 두 錯物의 安定度가 용매의 誘電常數의 減少와 더 불어 增加함을 볼 수 있고 . 增加率이 CsHblz에서 보다 C6HEC1 에서 더 큼을 알 수 있다 . 이 事實로 보아 C6H>-I2- 또는 (C6H6I)+-C1- 型의 이온 構造가 이들 錯物의 共鳴安定化에 참여하는 정도가 크머 또 그 참여도가 C&H6-I2 에서 보다 CgH^ICI 에서 더 크다고 생각된다 . Abstract The effect of solvents on the stabilities of the C사扁 J? complex and the C6H6«IC1 complex has been investigated through ultraviolet spectrophotometric measurements. The equilibrium constants obtained at room temperature for the formation of C6H6-l2 complex are 0.090, 0. 216 and 0. 328 I mole-1 in chloroform, cyclohexane and n-hexane, respectively. The corresponding equilibrium constants at room temperature for C6H6-IC1 complex are 0-125, 0. 676 and 0. 689 I mole"1. These results indicate that the stabilities of the two complexes increase with decreasing dielectric constants of the solvents used, the increase in stability­ being more rapid in the CgHg-lCl complex than in the complex.
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Eg, Sampling and A
    Method 101 8/4/2017 While we have taken steps to ensure the accuracy of this Internet version of the document, it is not the official version. To see a complete version including any recent edits, visit: https://www.ecfr.gov/cgi-bin/ECFR?page=browse and search under Title 40, Protection of Environment. METHOD 101—DETERMINATION OF PARTICULATE AND GASEOUS MERCURY EMISSIONS FROM CHLOR-ALKALI PLANTS (AIR STREAMS) NOTE: This method does not include all of the specifications (e.g., equipment and supplies) and procedures (e.g., sampling and analytical) essential to its performance. Some material is incorporated by reference from methods in appendix A to 40 CFR part 60. Therefore, to obtain reliable results, persons using this method should have a thorough knowledge of at least the following additional test methods: Method 1, Method 2, Method 3, and Method 5. 1.0 Scope and Application 1.1 Analytes. Analyte CAS No. Sensitivity Mercury (Hg) 7439-97-6 Dependent upon recorder and spectrophotometer. 1.2 Applicability. This method is applicable for the determination of Hg emissions, including both particulate and gaseous Hg, from chlor-alkali plants and other sources (as specified in the regulations) where the carrier-gas stream in the duct or stack is principally air. 1.3 Data Quality Objectives. Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. 2.0 Summary of Method Particulate and gaseous Hg emissions are withdrawn isokinetically from the source and collected in acidic iodine monochloride (ICl) solution. The Hg collected (in the mercuric form) is reduced to elemental Hg, which is then aerated from the solution into an optical cell and measured by atomic absorption spectrophotometry.
    [Show full text]
  • Iodine, Iodine Monochloride and Bromine Interaction with 1,3,5-Triazine in Chloroform Solution
    IODINE, IODINE MONOCHLORIDE AND BROMINE INTERACTION WITH 1,3,5-TRIAZINE IN CHLOROFORM SOLUTION 'H. R. Pouretedal*,2 A. Semnani, 'Μ. H. Keshavarz and 2A. Firooz 1. Faculty of Science, Malek-ashtar University of Technology, Shahin-shahr, Iran 2. Faculty of Science, Shahrekord University, Shahrekord, Iran e-mail: [email protected] Abstract: The interaction between 1,3,5-triazine as n-donor, with I2, IC1 and Br2 as σ-acceptor have been studied spectrophotometrically in chloroform at 25 °C. The results obtained for iodine indicate that of the complex [triazinel5+-l5"] is formed through an equilibrium step which is followed by slow conversion to [triazineI"T] and a fast reaction with iodine to produce [triazineri3"], through nonequilibrium steps. The equilibrium and rate constants of the recent reactions were measured. In the case of IC1 the formation of + [(triazine)2I ICl2"] by an equilibrium step is confirmed. The stability constant of the resulting complex was evaluated from the computer fitting of the absorbance vs. mole ratio data. The interaction with bromine involves only partial charge transfer which results in a blue-shift and an increase in the molar absorptivity (ε) of Br2. Based on the comparison of the results, it has been concluded that the interactions vary in the order IC1» I2 > Br2. Key Words: Spectrophotometry, Iodine monochloride, Iodine, Bromine, Charge-transfer Introduction The iodine molecular complexes with a wide variety of n-donors have been extensively studied [1-5], Some of the resulting charge transfer complexes have shown interesting physical properties [2-5]. Moreover, some attentions have been attributed to halogens and interhalogens [6-8].
    [Show full text]