Downloaded, As Available, from the NCBI Sequence Read Archive (SRA) for Each of the Genes on the Dog MSY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Network Medicine Approach for Analysis of Alzheimer's Disease Gene Expression Data
International Journal of Molecular Sciences Article Network Medicine Approach for Analysis of Alzheimer’s Disease Gene Expression Data David Cohen y, Alexander Pilozzi y and Xudong Huang * Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; [email protected] (D.C.); [email protected] (A.P.) * Correspondence: [email protected]; Tel./Fax: +1-617-724-9778 These authors contributed equally to this work. y Received: 15 November 2019; Accepted: 30 December 2019; Published: 3 January 2020 Abstract: Alzheimer’s disease (AD) is the most widespread diagnosed cause of dementia in the elderly. It is a progressive neurodegenerative disease that causes memory loss as well as other detrimental symptoms that are ultimately fatal. Due to the urgent nature of this disease, and the current lack of success in treatment and prevention, it is vital that different methods and approaches are applied to its study in order to better understand its underlying mechanisms. To this end, we have conducted network-based gene co-expression analysis on data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. By processing and filtering gene expression data taken from the blood samples of subjects with varying disease states and constructing networks based on that data to evaluate gene relationships, we have been able to learn about gene expression correlated with the disease, and we have identified several areas of potential research interest. Keywords: Alzheimer’s disease; network medicine; gene expression; neurodegeneration; neuroinflammation 1. Introduction Alzheimer’s disease (AD) is the most widespread diagnosed cause of dementia in the elderly [1]. -
The Autoimmune Signature of Hyperinflammatory Multisystem Inflammatory Syndrome in Children Rebecca A. Porritt1,*, Aleksandra Bi
The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children Rebecca A. Porritt1,*, Aleksandra Binek2,*, Lisa Paschold3,*, Magali Noval Rivas1, Angela Mc Ardle2, Lael M. Yonker4,5, Galit Alter4,5,6, Harsha Chandnani7, Merrick Lopez7, Alessio Fasano4,5, Jennifer E. Van Eyk2,8,†, Mascha Binder3,† and Moshe Arditi1,9,† 1Departments of Pediatrics, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars- Sinai Medical Center, Los Angeles, CA, USA. 2Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 3Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle- Wittenberg, 06120 Halle (Saale), Germany 4Massachusetts General Hospital, Mucosal Immunology and Biology Research Center and Department of Pediatrics, Boston, MA, USA. 5Harvard Medical School, Boston, MA, USA. 6Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA. 7Department of Pediatrics, Loma Linda University Hospital, CA, USA. 8Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 9Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA * these authors contributed equally † these senior authors contributed equally Corresponding author: Moshe Arditi, MD 8700 Beverly Blvd. Davis Building, Rooms D4024, 4025, 4027 Los Angeles, CA 90048 Phone:310-423-4471 -
The Human Y Chromosome's Azoospermia Factor B (Azfb) Region
18 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.40.1.18 on 1 January 2003. Downloaded from The human Y chromosome’s azoospermia factor b (AZFb) region: sequence, structure, and deletion analysis in infertile men A Ferlin, E Moro, A Rossi, B Dallapiccola, C Foresta ............................................................................................................................. J Med Genet 2003;40:18–24 See end of article for authors’ affiliations Microdeletions of the Y chromosome long arm are the most common mutations in infertile males, where ....................... they involve one or more “azoospermia factors” (AZFa, b, and c). Understanding of the AZF structure and gene content and mapping of the deletion breakpoints in infertile men are still incomplete. We Correspondence to: Professor C Foresta, have assembled a complete 4.3 Mb map of AZFb and surrounding regions by means of 38 BAC University of Padova, clones. The proximal part of AZFb consists of large repeated sequences organised in palindromes, but Department of Medical and most of it is single copy sequence. A number of known and novel genes and gene families map in this Surgical Sciences, Clinica interval, and most of them are testis specific or have testis specific transcripts. STS mapping allowed us Medica 3, Via Ospedale to identify four severely infertile subjects with a deletion in AZFb with similar breakpoints, therefore 105, 35128 Padova, Italy; [email protected] suggesting a common deletion mechanism. This deletion includes at least five single copy genes and two duplicated genes, but does not remove the historical AZFb candidate gene RBMY1. These data Revised version received suggest that other genes in AZFb may have important roles in spermatogenesis. -
Mammalian Skull Heterochrony Reveals Modular Evolution and a Link Between Cranial Development and Brain Size
ARTICLE Received 31 Oct 2013 | Accepted 11 Mar 2014 | Published 4 Apr 2014 DOI: 10.1038/ncomms4625 OPEN Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size Daisuke Koyabu1,2, Ingmar Werneburg1, Naoki Morimoto3, Christoph P.E. Zollikofer3, Analia M. Forasiepi1,4, Hideki Endo2, Junpei Kimura5, Satoshi D. Ohdachi6, Nguyen Truong Son7 & Marcelo R. Sa´nchez-Villagra1 The multiple skeletal components of the skull originate asynchronously and their develop- mental schedule varies across amniotes. Here we present the embryonic ossification sequence of 134 species, covering all major groups of mammals and their close relatives. This comprehensive data set allows reconstruction of the heterochronic and modular evolution of the skull and the condition of the last common ancestor of mammals. We show that the mode of ossification (dermal or endochondral) unites bones into integrated evolutionary modules of heterochronic changes and imposes evolutionary constraints on cranial heterochrony. How- ever, some skull-roof bones, such as the supraoccipital, exhibit evolutionary degrees of freedom in these constraints. Ossification timing of the neurocranium was considerably accelerated during the origin of mammals. Furthermore, association between developmental timing of the supraoccipital and brain size was identified among amniotes. We argue that cranial heterochrony in mammals has occurred in concert with encephalization but within a conserved modular organization. 1 Palaeontological Institute and Museum, University of Zu¨rich, Karl Schmid-Strasse 4, Zu¨rich 8006, Switzerland. 2 The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. 3 Anthropological Institute and Museum, University of Zu¨rich, Winterthurerstrasse 190, Zu¨rich 8057, Switzerland. -
Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome
DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2009 Major Subject: Biomedical Sciences DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Terje Raudsepp Committee Members, Bhanu P. Chowdhary William J. Murphy Paul B. Samollow Dickson D. Varner Head of Department, Evelyn Tiffany-Castiglioni August 2009 Major Subject: Biomedical Sciences iii ABSTRACT Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome. (August 2009) Nandina Paria, B.S., University of Calcutta; M.S., University of Calcutta Chair of Advisory Committee: Dr. Terje Raudsepp The genetic component of mammalian male fertility is complex and involves thousands of genes. The majority of these genes are distributed on autosomes and the X chromosome, while a small number are located on the Y chromosome. Human and mouse studies demonstrate that the most critical Y-linked male fertility genes are present in multiple copies, show testis-specific expression and are different between species. In the equine industry, where stallions are selected according to pedigrees and athletic abilities but not for reproductive performance, reduced fertility of many breeding stallions is a recognized problem. Therefore, the aim of the present research was to acquire comprehensive information about the organization of the horse Y chromosome (ECAY), identify Y-linked genes and investigate potential candidate genes regulating stallion fertility. -
The Role of the X Chromosome in Embryonic and Postnatal Growth
The role of the X chromosome in embryonic and postnatal growth Daniel Mark Snell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Francis Crick Institute/Medical Research Council National Institute for Medical Research University College London January 28, 2018 2 I, Daniel Mark Snell, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the work. Abstract Women born with only a single X chromosome (XO) have Turner syndrome (TS); and they are invariably of short stature. XO female mice are also small: during embryogenesis, female mice with a paternally-inherited X chromosome (XPO) are smaller than XX littermates; whereas during early postnatal life, both XPO and XMO (maternal) mice are smaller than their XX siblings. Here I look to further understand the genetic bases of these phenotypes, and potentially inform areas of future investigation into TS. Mouse pre-implantation embryos preferentially silence the XP via the non-coding RNA Xist.XPO embryos are smaller than XX littermates at embryonic day (E) 10.5, whereas XMO embryos are not. Two possible hypotheses explain this obser- vation. Inappropriate expression of Xist in XPO embryos may cause transcriptional silencing of the single X chromosome and result in embryos nullizygous for X gene products. Alternatively, there could be imprinted genes on the X chromosome that impact on growth and manifest in growth retarded XPO embryos. In contrast, dur- ing the first three weeks of postnatal development, both XPO and XMO mice show a growth deficit when compared with XX littermates. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Mammalian Skull Heterochrony Reveals Modular Evolution and a Link Between Cranial Development and Brain Size
Title Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size Koyabu, Daisuke; Werneburg, Ingmar; Morimoto, Naoki; Zollikofer, Christoph P. E.; Forasiepi, Analia M.; Endo, Author(s) Hideki; Kimura, Junpei; Ohdachi, Satoshi D.; Truong Son, Nguyen; Sánchez-Villagra, Marcelo R. Nature Communications, 5(3625) Citation https://doi.org/10.1038/ncomms4625 Issue Date 2014-04-04 Doc URL http://hdl.handle.net/2115/62700 Rights(URL) https://creativecommons.org/licenses/by-nc-sa/3.0/ Type article File Information ncomms4625.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ARTICLE Received 31 Oct 2013 | Accepted 11 Mar 2014 | Published 4 Apr 2014 DOI: 10.1038/ncomms4625 OPEN Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size Daisuke Koyabu1,2, Ingmar Werneburg1, Naoki Morimoto3, Christoph P.E. Zollikofer3, Analia M. Forasiepi1,4, Hideki Endo2, Junpei Kimura5, Satoshi D. Ohdachi6, Nguyen Truong Son7 & Marcelo R. Sa´nchez-Villagra1 The multiple skeletal components of the skull originate asynchronously and their develop- mental schedule varies across amniotes. Here we present the embryonic ossification sequence of 134 species, covering all major groups of mammals and their close relatives. This comprehensive data set allows reconstruction of the heterochronic and modular evolution of the skull and the condition of the last common ancestor of mammals. We show that the mode of ossification (dermal or endochondral) unites bones into integrated evolutionary modules of heterochronic changes and imposes evolutionary constraints on cranial heterochrony. How- ever, some skull-roof bones, such as the supraoccipital, exhibit evolutionary degrees of freedom in these constraints. -
Ultraconserved Elements Are Novel Phylogenomic Markers That Resolve Placental Mammal Phylogeny When Combined with Species Tree Analysis
Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species tree analysis John E. McCormack,1,8 Brant C. Faircloth,2 Nicholas G. Crawford,3 Patricia Adair Gowaty,4,5 Robb T. Brumfield1,6 & Travis C. Glenn7 1 Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803; 2 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; 3 Department of Biology, Boston University, Boston, MA 02215; 4 Smithsonian Tropical Research Institute, MRC 0580-11 Unit 9100, Box 0948, DPO, AA 34002-9998, USA; 5 Institute of the Environment, University of California, Los Angeles, CA 90095; 6 Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803; 7 Department of Environmental Health Science, University of Georgia, Athens, GA 30602 Running Title: Ultraconserved elements fuel species-tree phylogenomics Keywords: phylogenomics, coalescence 8 Corresponding author: Moore Laboratory of Zoology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041; E-mail: [email protected]; Tel: 734-358-6886 Page 1 Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Phylogenomics offers the potential to fully resolve the Tree of Life, but increasing genomic coverage also reveals conflicting evolutionary histories among genes, demanding new analytical strategies for elucidating a single history of life. Here, we outline a phylogenomic approach using a novel class of phylogenetic markers derived from ultraconserved elements and flanking DNA. Using species-tree analysis that accounts for discord among hundreds of independent loci, we show that this class of marker is useful for recovering deep-level phylogeny in placental mammals. -
The Evolutionary History of Human and Chimpanzee Y-Chromosome Gene Loss
The Evolutionary History of Human and Chimpanzee Y-Chromosome Gene Loss George H. Perry,* à Raul Y. Tito,* and Brian C. Verrelli* *Center for Evolutionary Functional Genomics, The Biodesign Institute, Arizona State University, Tempe; School of Life Sciences, Arizona State University, Tempe; and àSchool of Human Evolution and Social Change, Arizona State University, Tempe Recent studies have suggested that gene gain and loss may contribute significantly to the divergence between humans and chimpanzees. Initial comparisons of the human and chimpanzee Y-chromosomes indicate that chimpanzees have a dis- proportionate loss of Y-chromosome genes, which may have implications for the adaptive evolution of sex-specific as well as reproductive traits, especially because one of the genes lost in chimpanzees is critically involved in spermatogenesis in humans. Here we have characterized Y-chromosome sequences in gorilla, bonobo, and several chimpanzee subspecies for 7 chimpanzee gene–disruptive mutations. Our analyses show that 6 of these gene-disruptive mutations predate chimpan- zee–bonobo divergence at ;1.8 MYA, which indicates significant Y-chromosome change in the chimpanzee lineage Downloaded from https://academic.oup.com/mbe/article/24/3/853/1246230 by guest on 23 September 2021 relatively early in the evolutionary divergence of humans and chimpanzees. Introduction The initial comparisons of human and chimpanzee Comparative analyses of single-nucleotide differences (Pan troglodytes) Y-chromosome sequences revealed that between human and chimpanzee genomes typically show although there are no lineage-specific gene-disruptive mu- estimates of approximately 1–2% divergence (Watanabe tations in the X-degenerate portion of the Y-chromosome et al. 2004; Chimpanzee Sequencing and Analysis Consor- fixed within humans, surprisingly, 4 genes, CYorf15B, tium 2005). -
Supplementary Methods
Supplementary methods Human lung tissues and tissue microarray (TMA) All human tissues were obtained from the Lung Cancer Specialized Program of Research Excellence (SPORE) Tissue Bank at the M.D. Anderson Cancer Center (Houston, TX). A collection of 26 lung adenocarcinomas and 24 non-tumoral paired tissues were snap-frozen and preserved in liquid nitrogen for total RNA extraction. For each tissue sample, the percentage of malignant tissue was calculated and the cellular composition of specimens was determined by histological examination (I.I.W.) following Hematoxylin-Eosin (H&E) staining. All malignant samples retained contained more than 50% tumor cells. Specimens resected from NSCLC stages I-IV patients who had no prior chemotherapy or radiotherapy were used for TMA analysis by immunohistochemistry. Patients who had smoked at least 100 cigarettes in their lifetime were defined as smokers. Samples were fixed in formalin, embedded in paraffin, stained with H&E, and reviewed by an experienced pathologist (I.I.W.). The 413 tissue specimens collected from 283 patients included 62 normal bronchial epithelia, 61 bronchial hyperplasias (Hyp), 15 squamous metaplasias (SqM), 9 squamous dysplasias (Dys), 26 carcinomas in situ (CIS), as well as 98 squamous cell carcinomas (SCC) and 141 adenocarcinomas. Normal bronchial epithelia, hyperplasia, squamous metaplasia, dysplasia, CIS, and SCC were considered to represent different steps in the development of SCCs. All tumors and lesions were classified according to the World Health Organization (WHO) 2004 criteria. The TMAs were prepared with a manual tissue arrayer (Advanced Tissue Arrayer ATA100, Chemicon International, Temecula, CA) using 1-mm-diameter cores in triplicate for tumors and 1.5 to 2-mm cores for normal epithelial and premalignant lesions. -
Speciation Network in Laurasiatheria: Retrophylogenomic Signals
Downloaded from genome.cshlp.org on June 1, 2017 - Published by Cold Spring Harbor Laboratory Press Research Speciation network in Laurasiatheria: retrophylogenomic signals Liliya Doronina,1 Gennady Churakov,1,2,5 Andrej Kuritzin,3 Jingjing Shi,1 Robert Baertsch,4 Hiram Clawson,4 and Jürgen Schmitz1,5 1Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; 2Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany; 3Department of System Analysis, Saint Petersburg State Institute of Technology, 190013 St. Petersburg, Russia; 4Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA Rapid species radiation due to adaptive changes or occupation of new ecospaces challenges our understanding of ancestral speciation and the relationships of modern species. At the molecular level, rapid radiation with successive speciations over short time periods—too short to fix polymorphic alleles—is described as incomplete lineage sorting. Incomplete lineage sorting leads to random fixation of genetic markers and hence, random signals of relationships in phylogenetic reconstruc- tions. The situation is further complicated when you consider that the genome is a mosaic of ancestral and modern incom- pletely sorted sequence blocks that leads to reconstructed affiliations to one or the other relative, depending on the fixation of their shared ancestral polymorphic alleles. The laurasiatherian relationships among Chiroptera, Perissodactyla, Cetartiodactyla, and Carnivora present a prime example for such enigmatic affiliations. We performed whole-genome screenings for phylogenetically diagnostic retrotransposon insertions involving the representatives bat (Chiroptera), horse (Perissodactyla), cow (Cetartiodactyla), and dog (Carnivora), and extracted among 162,000 preselected cases 102 virtually homoplasy-free, phylogenetically informative retroelements to draw a complete picture of the highly complex evolutionary relations within Laurasiatheria.